Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 9937560

Dany jest zbiór wszystkich graniastosłupów prawidłowych sześciokątnych, których suma długości wszystkich krawędzi jest równa 216. Oblicz długość krawędzi podstawy i wysokość tego z danych graniastosłupów, który ma największe pole powierzchni bocznej.

Wersja PDF
Rozwiązanie

Zacznijmy od rysunku.


PIC


Jeżeli oznaczymy krawędź podstawy przez a , a wysokość graniastosłupa przez H , to suma wszystkich krawędzi jest równa

2 16 = 12a + 6H ⇒ H = 36− 2a.

Pole powierzchni bocznej jest więc równe

Pb(a) = 6 ⋅aH = 6a (36− 2a) = − 12a(a − 18 ).

Wykresem tej funkcji jest parabola o ramionach skierowanych w dół i wierzchołku w punkcie a = 0+-18-= 9 2 . Zatem największe pole boczne otrzymamy dla a = 9 i H = 36 − 2a = 1 8 .  
Odpowiedź: Krawędź podstawy: 9, wysokość: 18

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!