Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Na powierzchni piłki namalowano trzy jednakowe okręgi, dzielące ją na osiem jednakowych części, jak na rysunku obok. Trzmiel, który usiadł na piłce w punkcie przecięcia okręgów, wędruje po namalowanych okręgach w taki sposób, że po przejściu ćwiartki okręgu w punkcie przecięcia z innym okręgiem zawsze skręca na przemian w w prawo albo w lewo, tj. w prawo, gdy w poprzedzającym punkcie skręcał w lewo, natomiast w lewo, gdy w poprzedzającym punkcie skręcał w prawo. Jaka jest najmniejsza liczba ćwiartek okręgów, które musi przejść trzmiel aby ponownie znalazł się w punkcie, z którego wyruszył?


PIC


A) 6 B) 9 C) 12 D) 15 E) 18

Dana jest kula o promieniu 3 i o środku w początku układu współrzędnych. Ile punktów na powierzchni tej kuli ma wszystkie współrzędne całkowite?
A) 30 B) 24 C) 12 D) 6 E) 3