Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 5129110

Liczbę dodatnią a przedstaw w postaci sumy dwóch takich składników, aby suma ich sześcianów była najmniejsza.

Wersja PDF
Rozwiązanie

Jeżeli oznaczymy jeden ze składników przez x to drugi jest równy a− x . Zatem suma ich sześcianów jest równa

f(x) = x3 + (a − x)3 = x 3 + a 3 − 3a 2x+ 3ax2 − x3 = 3ax 2 − 3a2x+ a3.

Wykresem tej funkcji jest parabola o ramionach skierowanych do góry (bo a jest dodatnie!) oraz wierzchołku w punkcie

 2 x = 3a--= a. 6a 2

Zatem minimalną sumę sześcianów otrzymamy dla  a x = 2 .  
Odpowiedź: a = a2 + a2

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!