Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 5000598

Wykaż, że jeżeli ciąg (an) jest arytmetyczny, to ciąg (bn ) określony wzorem bn = 2an jest geometryczny.

Wersja PDF
Rozwiązanie

Musimy sprawdzić, że iloraz dwóch kolejnych wyrazów ciągu (bn) jest stały, tzn. że nie zależy od n . Po drodze będziemy musieli skorzystać z tego, że ciąg (an ) jest arytmetyczny, czyli an+1 − an = r dla n ≥ 1 . Liczymy

bn+1- 2an+1 2an+r- b = 2an = 2an = n an r = 2--⋅-2-= 2r. 2an

Wyrażenie to nie zależy od n , czyli ciąg (bn ) jest geometryczny.

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!