Sprawdźmy na początek, kiedy dana funkcja ma dwa różne pierwiastki
.
Przy tym założeniu równanie ma dwa różne pierwiastki spełniające wzory Viète’a
Pozostało teraz sprawdzić, kiedy suma kwadratów odległości punktów i
od danej prostej jest równa 6. Korzystamy ze wzoru na odległość punktu
od prostej
:
W naszej sytuacji mamy równanie
Korzystamy teraz ze wzorów Viète’a.
Tylko pierwsza z tych liczb spełnia warunek z -ą.
Odpowiedź: