/Szkoła średnia/Zadania maturalne/Matura 2009/Matura próbna
Próbny Egzamin Maturalny
z Matematyki Zestaw przygotowany przez serwis www.zadania.info poziom rozszerzony 9 maja 2009 Czas pracy: 180 minut
W prostokącie, którego krótszy bok ma długość 8 zawarty jest kwadrat o boku równym różnicy
długości boków prostokąta, i którego przekątne są równoległe do boków prostokąta.
- Wyraź pole pozostałe po wycięciu kwadratu z prostokąta jako funkcję dłuższego boku prostokąta. Wyznacz dziedzinę otrzymanej funkcji.
- Wykaż, że różnica pól prostokąta i kwadratu jest zawsze większa od 64.
Uzasadnij, że suma kwadratów dwóch kolejnych nieparzystych liczb całkowitych nie może być kwadratem liczby całkowitej.
Współrzędne przeciwległych wierzchołków prostokąta są równe . Wyznacz współrzędne pozostałych wierzchołków prostokąta wiedząc, że wierzchołek leży na prostej .
Wyznacz wszystkie rozwiązania równania należące do przedziału .
Boja ma kształt dwóch stożków połączonych podstawami, przy czym kąty rozwarcia tych stożków są równe i , a odległość ich wierzchołków jest równa . Oblicz pole powierzchni tej boi.
Wyznacz wszystkie wartości parametru , dla których wielomian
ma 4 różne pierwiastki.
Na bokach i kwadratu o boku długości 1 wybrano punkty i w ten sposób, że i , dla . Niech będzie punktem przecięcia odcinków i
- Wykaż, że jeżeli trójkąt jest prostokątny to .
- Oblicz cosinus kąta jeżeli i .
Dla każdej liczby tworzymy funkcję , której wykres powstaje przez przesunięcie wykresu funkcji o wektor .
- Oblicz sumę wszystkich miejsc zerowych funkcji .
- Wyznacz miejsce zerowe funkcji .
Wyznacz iloraz niezerowego ciągu geometrycznego, w którym suma 10 początkowych wyrazów jest 5 razy większa od sumy pierwszych 5 wyrazów.
Wykres funkcji , określonej dla następującym wzorem
przecina dodatnią półoś w dwóch różnych punktach.
- Oblicz wartość wyrażenia .
- Uzasadnij, że dla każdych dwóch liczb rzeczywistych spełniona jest nierówność .
Na loterii jest losów, w tym 4 wygrywające. Kupujemy 2 losy. Dla jakiej liczby prawdopodobieństwo otrzymania co najmniej jednego losu wygrywającego jest równe ?