Zadania.info Największy internetowy zbiór zadań z matematyki

/Konkursy/Zadania/Geometria/Planimetria/Trójkąt/Dwusieczne

Wyszukiwanie zadań

Udowodnij że jeśli dwie dwusieczne w trójkącie są sobie równe to trójkąt jest równoramienny (twierdzenie Steinera-Lehmusa).

Dwusieczna kąta B trójkąta ABC przecina bok AC w punkcie S , a dwusieczna kąta C przecina bok AB w punkcie T . Dwusieczne przecinają się w punkcie O . Znajdź miarę kąta A , jeżeli wiadomo, że na czworokącie ATOS można opisać okrąg.

W trójkącie ABC dwusieczna kąta BAC przecina bok BC trójkąta w punkcie D . Wykaż, że

BD-- = AB-. DC AC

W trójkacie ABC dwusieczna kąta ACB przecina bok AB w punkcie D . Długosci boków BC i AC są równe odpowiednio a i b , a długość odcinka CD jest równa d . Wykaż, że d < 2ab- a+b .

Na boku BC trójkąta ABC wybrano punkt D tak, by |∡CAD | = |∡ABC | . Odcinek AE jest dwusieczną kąta DAB . Udowodnij, że |CE | = |AC | .


PIC


spinner