Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 4241584

Odcinek CD jest wysokością przedstawionego na rysunku trójkąta równoramiennego ABC , w którym |AC | = |BC | . Punkt L jest rzutem punktu K wysokości CD na bok BC . Udowodnij, że ∡CAK = ∡KDL .


PIC


Wersja PDF
Rozwiązanie

Dorysujmy odcinek KB .


PIC


Wysokość CD jest osią symetrii trójkąta ABC , więc

∡CAK = ∡CBK .

Z drugiej strony, dwa przeciwległe kąty czworokąta KDBL są proste, więc wierzchołki tego czworokąta leżą na jednym okręgu (o średnicy KB ). Zatem

∡CBK = ∡LBK = ∡LDK

jako kąty wpisane oparte na tym samym łuku.

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!