Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 9918699

Suma pierwiastków trójmianu  2 y = ax + bx + c jest równa loga2 c ⋅logc2 a , gdzie a,c ∈ R + ∖ {1} . Uzasadnij, że odcięta wierzchołka paraboli będącej wykresem tego trójmianu jest równa 18 .

Wersja PDF
Rozwiązanie

Przekształćmy najpierw podane wyrażenie

 log c log a loga2 c⋅logc2 a = -----2 ⋅----2-= loga lo gc -log-c- log-a-- 1- 2 lo ga ⋅ 2log c = 4 .

Na mocy wzorów Viète’a mamy zatem

1 b --= x1 + x2 = − --= 2xw, 4 a

gdzie x w oznacza pierwszą współrzędną wierzchołka paraboli. Stąd  1 xw = 8 .

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!