Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 7350807

Rozwiąż równanie tg 3x = tg x .

Wersja PDF
Rozwiązanie

Będziemy korzystać z warunku (który łatwo odczytać z wykresu)

(tgx = tgy) ⇐ ⇒ (x = y+ kπ),

gdzie k jest liczbą całkowitą.

Liczymy

tg 3x = tg x 3x = x + kπ 2x = kπ k π x = ---. 2

To jeszcze nie koniec, bo jak dotąd nie zajęliśmy się dziedziną równania.

Jeżeli k = 2n + 1 jest liczbą nieparzystą to  π- π- x = 2(2n + 1) = 2 + nπ i liczby te nie należą do dziedziny tangensa.

Jeżeli natomiast k = 2n jest liczbą parzystą to x = n π i wszystko jest OK (obie strony równania są równe 0).  
Odpowiedź: x = kπ, k ∈ C

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!