Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 4868683

Oblicz całkę ∫ ln-√x- 2√x-dx .

Wersja PDF
Rozwiązanie

Podstawiamy  √ -- t = x .

∫ √ -- || √ -- || ∫ ln√--xdx = || t = 1x || = ln tdt. 2 x |dt = 2√x-dx|

Teraz całkujemy przez części.

∫ ∫ ′ ′ u v = uv − uv

Liczymy

∫ | | ∫ ||u′ = 1 v = ln t|| 1- ln tdt = |u = t v′ = 1 | = tln t− t ⋅tdt = ∫ t √ -- √ -- √ -- = tln t− 1dt = tln t− t+ C = x ln x − x + C .

 
Odpowiedź: √ -- √ -- √ -- x ln x − x + C

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!