/Szkoła średnia/Zadania testowe

Zadanie nr 3506892

Dodaj do ulubionych
Dodaj do rozwiązanych

Wiadomo, że wielomian  5 4 3 2 1 5x − 133x + 383x − 499x + 146x + 120 ma w zbiorze { } 76, 65, 87, 95 dokładnie jeden pierwiastek wymierny. Jest nim liczba

A) 6 5 B) 7 6 C) 8 7 D) 9 5

Rozwiązanie

Na mocy twierdzenia o wymiernych pierwiastkach wielomianu, jeżeli ułamek nieskracalny p q jest pierwiastkiem danego wielomianu, to p jest dzielnikiem

120 = 23 ⋅3⋅ 5,

a q jest dzielnikiem

15 = 3 ⋅5.

Wśród podanych ułamków tylko p = 6 q 5 spełnia te dwa warunki.  
Odpowiedź: A

Wersja PDF
spinner