/Szkoła średnia/Zadania testowe/Geometria

Zadanie nr 2491411

Dodaj do ulubionych
Dodaj do rozwiązanych

Liczba przekątnych wszystkich ścian bocznych i podstaw pewnego graniastosłupa jest równa 110. Zatem podstawą tego graniastosłupa jest:
A) dziewięciokąt B) dziesięciokąt C) jedenastokąt D) dwunastokąt

Rozwiązanie

Oznaczmy przez n liczbę wierzchołków podstawy graniastosłupa.


PIC


Każda ściana graniastosłupa jest prostokątem, więc ściany boczne mają łącznie 2n przekątnych. Do tego musimy dodać przekątne podstaw – na mocy wzoru na liczę przekątnych n -kąta wypukłego, podstawy mają

 n(n − 3) 2⋅ ---------= n2 − 3n 2

przekątnych, więc w sumie przekątnych jest

n 2 − 3n+ 2n = n 2 − n.

Rozwiązujemy równanie

n 2 − n − 110 = 0 2 2 Δ = (− 1) − 4 ⋅(− 110) = 1 + 440 = 441 = 21 1 − 21 1+ 21 n = -------= − 10 lub n = -------= 11. 2 2

Odrzucamy rozwiązanie ujemne i otrzymujemy n = 11 .  
Odpowiedź: C

Wersja PDF
spinner