/Szkoła średnia/Zadania testowe/Geometria

Zadanie nr 9340676

Dodaj do ulubionych
Dodaj do rozwiązanych

Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości 3, a przekątna ściany bocznej ma długość 4 (zobacz rysunek). Kąt, jaki tworzą przekątne ścian bocznych tego graniastosłupa wychodzące z jednego wierzchołka, ma miarę α .


PIC


Wtedy wartość sin α2 jest równa
A) 3 4 B) √- -7- 4 C)  √- 3-2- 8 D)  √ - 34-2

Rozwiązanie

Niech D będzie środkiem górnej podstawy.


PIC


Trójkąt ABC jest równoramienny, więc odcinek AD jest dwusieczną kąta BAC . Mamy zatem

 √ -- √ -- α- BD-- 12BC-- 12 ⋅-3-2- 3--2- sin 2 = AB = AB = 4 = 8 .

 
Odpowiedź: C

Wersja PDF
spinner