/Szkoła średnia/Zadania testowe/Geometria/Planimetria

Zadanie nr 9166653

Dodaj do ulubionych
Dodaj do rozwiązanych

Dany jest trójkąt ABC , w którym  ∘ |AC | = |BC |,|∡ACB | = 80 , zaś AD jest dwusieczną kąta BAC i D ∈ BC . Wówczas miara kąta ADB jest równa
A) 105 ∘ B) 90∘ C)  ∘ 80 D)  ∘ 75

Rozwiązanie

Zaczynamy od rysunku


PIC


Trójkąt ABC jest trójkątem równoramiennym, więc kąt CAB jest równy kątowi ABC . Zatem

 ∘ ∘ ∘ ∡ABC = 18-0-−--∡ACB-- = 180--−-80--= 50∘. 2 2

Odcinek AD jest dwusieczną kąta CAB , więc

 ∘ ∡DAB = ∡CAB---= 50--= 25∘. 2 2

Teraz już łatwo obliczyć szukany kąt

 ∘ ∘ ∘ ∘ ∘ α = 180 − ∡DAB − ∡DBA = 18 0 − 25 − 50 = 105 .

 
Odpowiedź: A

Wersja PDF
spinner