/Szkoła średnia/Zadania testowe/Zadania z treścią

Zadanie nr 7487589

Dodaj do ulubionych
Dodaj do rozwiązanych

Na podstawie zasad dynamiki można udowodnić, że torem ruchu rzuconej piłki – przy pominięciu oporów powietrza – jest fragment paraboli. Koszykarz wykonał rzut do kosza z odległości x = 7,01 m k , licząc od środka piłki do środka obręczy kosza w linii poziomej. Do opisu toru ruchu przyjmiemy układ współrzędnych, w którym środek piłki w chwili początkowej znajdował się w punkcie x0 = 0 , y0 = 2,50 m . Środek piłki podczas rzutu poruszał się po paraboli danej równaniem:

y = − 0,1 74x2 + 1,3x + 2,5.

Rzut okazał się udany, a środek piłki przeszedł dokładnie przez środek kołowej obręczy kosza. Na rysunku poniżej przedstawiono tę sytuację oraz tor ruchu piłki w układzie współrzędnych.


ZINFO-FIGURE


Obręcz kosza znajduje się na wysokości (podanej w zaokrągleniu z dokładnością do 0,01 m)
A) 3,04 m B) 3,06 m C) 3,80 m D) 4,93 m

Rozwiązanie

Rozwiązanie tego zadania jest dostępne tylko dla użytkowników z wykupionym abonamentem.
Nie chcesz się rejestrować ani opłacać abonamentu? Zapłać przelewem 7,90 zł lub telefonicznie 9,90 zł, a otrzymasz dwudziestominutowy dostęp do wszystkich materiałów dostępnych w portalu.
spinner