Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 3060087

Punkty A ,B i C leżą na okręgu o środku S (zobacz rysunek).


PIC


Miara zaznaczonego kąta wpisanego ACB jest równa
A) 65∘ B) 100∘ C) 11 5∘ D) 13 0∘

Wersja PDF
Rozwiązanie

Sposób I

Korzystamy z faktu, że kąt środkowy jest dwa razy większy od kąta wpisanego opartego na tym samym łuku (na danym obrazku jest to łuk AMB ).


PIC

Zatem

∡ACB = 1∡ASB = 1-⋅230∘ = 11 5∘. 2 2

Sposób II

Jeżeli nie chcemy posługiwać się kątami wklęsłymi to dorysujmy punkt D na na okręgu. Wtedy

 1 1 ∡ADB = -∡ASB = -(360∘ − 23 0∘) = 65∘. 2 2

Zatem

 ∘ ∘ ∘ ∘ ∡ACB = 180 − ∡ADB = 180 − 6 5 = 115 .

 
Odpowiedź: C

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!