I próbna matura 2019 z matematyki z zadania.info
Zadania na poziomie podstawowym
Zadania na poziomie rozszerzonym
Aby maksymalnie wykorzystać tę okazję do sprawdzenia swoich umiejętności radzimy spróbować rozwiązać te zadania w warunkach maksymalnie zbliżonych do egzaminacyjnych. W tym celu
- Postarajcie się wygospodarować odpowiednią ilość czasu (170 minut na poziomie podstawowym i 3 godziny na rozszerzonym) tak, aby zadania rozwiązywać bez przerw.
- Korzystajcie tylko z takich przyborów jakie są dopuszczone na egzaminie: prosty kalkulator, linijka, cyrkiel, tablice wzorów.
- Starajcie się zmieścić rozwiązania na arkuszach egzaminacyjnych.
- Starajcie się maksymalnie wykorzystać czas. Jeżeli zostanie wam czas, to myślcie nad zadaniami, których nie udało wam się rozwiązać. Jeżeli uda wam się rozwiązać wszystkie zadania, to sprawdźcie swoje rozwiązania.
Powinno to być oczywiste, ale rozwiązywanie zadań w warunkach egzaminacyjnych jest bardzo specyficzne. Trzeba umieć radzić sobie ze stresem związanym z egzaminem, ze stresem związanym z brakiem wystarczającej ilości czasu, ze stresem związanym z brakiem wystarczającej ilości miejsca do pisania (wszystko co napiszemy musimy oddać). Z tego powodu radzimy już w tej chwili zacząć się przyzwyczajać do takich warunków.
Rozwiązania zadań.
Poziom podstawowy
Poziom rozszerzony
Kolejna zabawa maturalna już za tydzień, 9 marca.
Właśnie zamieściliśmy arkusze I próbnej matury.
https://www.zadania.info/n/2625048
Do jutra (3 marca) do godz. 16 posty na temat zadań i rozwiązań zadań z tych arkuszy będą usuwane.
Jeżeli macie wątpliwości co do poprawności treści zadań to piszcie na
supergolonkaMALPAzadania.info
Rozwiązania zadań:
Podstawa
Rozszerzenie
Mam pytanie, dlaczego w zadaniu 12 z rozszerzenia w rozwiązaniu zadania miejsca przy jednym stole wybieramy na 10 po 3 sposoby?
Nie są to przecież 3 losowe miejsca, a te obok siebie.
A czy w zadaniu 11 z roz mogą być dwa rozwiązania (-13,13) i (7,-5)? Bo w rozwiązaniu jest zawarte tylko jedno rozwiązanie
\((7,-5)\) to wierzchołek \(B\)
Według mnie w zadaniu 12 rozszerzenia szukane prawdopodobieństwo powinno być równe \(\frac{1}{247}\).
Przyjmuję, że stoły są rozróżnialne, miejsca przy stołach - nie!
\(|\Omega|={40\choose10}\cdot 9!\cdot{30\choose10}\cdot 9!\cdot{20\choose10}\cdot 9!\cdot{10\choose10}\cdot 9!\)
bo: wybieram osoby do kolejnego stołu i sadzam ich przy stole
\(|A|={4\choose1}\cdot 3!\cdot{37\choose7}\cdot 7!\cdot{30\choose10}\cdot 9!\cdot{20\choose10}\cdot 9!\cdot{10\choose10}\cdot 9!\)
bo: wybieram stół dla wybranych osób, sadzam ich obok siebie, wybieram do tego stołu pozostałych siedmiu, sadzam ich i ... dalej jak w \(\Omega\)
Zakładając jednakowe p-wa zdarzeń elementarnych, z definicji Laplace'a odpowiedź jak wyżej...
Mylę się?
Miłego dnia
Dlaczego 9! a nie 10! skoro do 1 stołu mam 10 osób i do każdego kolejnego też po 10?
Dlaczego 9! a nie 10! skoro do 1 stołu mam 10 osób i do każdego kolejnego też po 10?
Wszystkich permutacji jest \(10!\) ,ale z każdą permutacją związane są permutacje nierozróżnialne,czyli polegające na obrocie całej grupy o kąt \(\frac{360^o}{10}=36^o\).Takich obrotów jest 10.Dlatego liczba odróżnialnych permutacji
jest równa \(\frac{10!}{10}=9!\)
Co innego,gdyby zajmowano miejsca na prostej ławie.Wtedy jest 10! permutacji.
A nie można tak:
\(P(a)= \frac{4\cdot 10 \cdot 3! \cdot 37!}{40!}= \frac{1}{247}\)
Zakładam, ze stoły i miejsca są ponumerowane.
P(A)= \(\frac{4\cdot 10 \cdot 3! \cdot 37!}{40!}\)
P(A)=\(\frac{1}{247}\)
Zakładam, że stoły i miejsca są ponumerowane.