Zadania na poziomie podstawowym
Zadania na poziomie rozszerzonym
Aby maksymalnie wykorzystać tę okazję do sprawdzenia swoich umiejętności radzimy spróbować rozwiązać te zadania w warunkach maksymalnie zbliżonych do egzaminacyjnych. W tym celu
Powinno to być oczywiste, ale rozwiązywanie zadań w warunkach egzaminacyjnych jest bardzo specyficzne. Trzeba umieć radzić sobie ze stresem związanym z egzaminem, ze stresem związanym z brakiem wystarczającej ilości czasu, ze stresem związanym z brakiem wystarczającej ilości miejsca do pisania (wszystko co napiszemy musimy oddać). Z tego powodu radzimy już w tej chwili zacząć się przyzwyczajać do takich warunków.
Rozwiązania zadań.
Poziom podstawowy
Poziom rozszerzony
Kolejna zabawa maturalna już za tydzień, 9 marca.
Właśnie zamieściliśmy arkusze I próbnej matury.
https://www.zadania.info/n/2625048
Do jutra (3 marca) do godz. 16 posty na temat zadań i rozwiązań zadań z tych arkuszy będą usuwane.
Jeżeli macie wątpliwości co do poprawności treści zadań to piszcie na
supergolonkaMALPAzadania.info
Rozwiązania zadań:
Podstawa
Rozszerzenie
Mam pytanie, dlaczego w zadaniu 12 z rozszerzenia w rozwiązaniu zadania miejsca przy jednym stole wybieramy na 10 po 3 sposoby?
Nie są to przecież 3 losowe miejsca, a te obok siebie.
A czy w zadaniu 11 z roz mogą być dwa rozwiązania (-13,13) i (7,-5)? Bo w rozwiązaniu jest zawarte tylko jedno rozwiązanie
\((7,-5)\) to wierzchołek \(B\)
Według mnie w zadaniu 12 rozszerzenia szukane prawdopodobieństwo powinno być równe \(\frac{1}{247}\).
Przyjmuję, że stoły są rozróżnialne, miejsca przy stołach - nie!
\(|\Omega|={40\choose10}\cdot 9!\cdot{30\choose10}\cdot 9!\cdot{20\choose10}\cdot 9!\cdot{10\choose10}\cdot 9!\)
bo: wybieram osoby do kolejnego stołu i sadzam ich przy stole
\(|A|={4\choose1}\cdot 3!\cdot{37\choose7}\cdot 7!\cdot{30\choose10}\cdot 9!\cdot{20\choose10}\cdot 9!\cdot{10\choose10}\cdot 9!\)
bo: wybieram stół dla wybranych osób, sadzam ich obok siebie, wybieram do tego stołu pozostałych siedmiu, sadzam ich i ... dalej jak w \(\Omega\)
Zakładając jednakowe p-wa zdarzeń elementarnych, z definicji Laplace'a odpowiedź jak wyżej...
Mylę się?
Miłego dnia
Jerry pisze:Według mnie w zadaniu 12 rozszerzenia szukane prawdopodobieństwo powinno być równe \(\frac{1}{247}\).
Przyjmuję, że stoły są rozróżnialne, miejsca przy stołach - nie!
\(|\Omega|={40\choose10}\cdot 9!\cdot{30\choose10}\cdot 9!\cdot{20\choose10}\cdot 9!\cdot{10\choose10}\cdot 9!\)
bo: wybieram osoby do kolejnego stołu i sadzam ich przy stole
\(|A|={4\choose1}\cdot 3!\cdot{37\choose7}\cdot 7!\cdot{30\choose10}\cdot 9!\cdot{20\choose10}\cdot 9!\cdot{10\choose10}\cdot 9!\)
bo: wybieram stół dla wybranych osób, sadzam ich obok siebie, wybieram do tego stołu pozostałych siedmiu, sadzam ich i ... dalej jak w \(\Omega\)
Zakładając jednakowe p-wa zdarzeń elementarnych, z definicji Laplace'a odpowiedź jak wyżej...
Mylę się?
Miłego dnia
Też uważam, że tak jest poprawnie.
Deathus pisze:Jerry pisze:Według mnie w zadaniu 12 rozszerzenia szukane prawdopodobieństwo powinno być równe \(\frac{1}{247}\).
Przyjmuję, że stoły są rozróżnialne, miejsca przy stołach - nie!
\(|\Omega|={40\choose10}\cdot 9!\cdot{30\choose10}\cdot 9!\cdot{20\choose10}\cdot 9!\cdot{10\choose10}\cdot 9!\)
bo: wybieram osoby do kolejnego stołu i sadzam ich przy stole
\(|A|={4\choose1}\cdot 3!\cdot{37\choose7}\cdot 7!\cdot{30\choose10}\cdot 9!\cdot{20\choose10}\cdot 9!\cdot{10\choose10}\cdot 9!\)
bo: wybieram stół dla wybranych osób, sadzam ich obok siebie, wybieram do tego stołu pozostałych siedmiu, sadzam ich i ... dalej jak w \(\Omega\)
Zakładając jednakowe p-wa zdarzeń elementarnych, z definicji Laplace'a odpowiedź jak wyżej...
Mylę się?
Miłego dnia
Też uważam, że tak jest poprawnie.
Dlaczego 9! a nie 10! skoro do 1 stołu mam 10 osób i do każdego kolejnego też po 10?
Dlaczego 9! a nie 10! skoro do 1 stołu mam 10 osób i do każdego kolejnego też po 10?
Wszystkich permutacji jest \(10!\) ,ale z każdą permutacją związane są permutacje nierozróżnialne,czyli polegające na obrocie całej grupy o kąt \(\frac{360^o}{10}=36^o\).Takich obrotów jest 10.Dlatego liczba odróżnialnych permutacji
jest równa \(\frac{10!}{10}=9!\)
Co innego,gdyby zajmowano miejsca na prostej ławie.Wtedy jest 10! permutacji.
A nie można tak:
\(P(a)= \frac{4\cdot 10 \cdot 3! \cdot 37!}{40!}= \frac{1}{247}\)
Zakładam, ze stoły i miejsca są ponumerowane.
P(A)= \(\frac{4\cdot 10 \cdot 3! \cdot 37!}{40!}\)
P(A)=\(\frac{1}{247}\)
Zakładam, że stoły i miejsca są ponumerowane.
trol pisze:P(A)= \(\frac{4\cdot 10 \cdot 3! \cdot 37!}{40!}\)
P(A)=\(\frac{1}{247}\)
Zakładam, że stoły i miejsca są ponumerowane.
Można
![]() ![]() |