Zestaw użytkownika nr 5741_8141

Zestaw użytkownika
nr 5741_8141

Zadanie 1
(5 pkt)

Rozwiąż nierówność x4+-2x3+x-2 x− 1+ 6x2 < 0 .

Zadanie 2
(5 pkt)

Określ liczbę pierwiastków równania  2 (m + 1 )x + (m + 1)x + 1 = 0 w zależności od wartości parametru m , a następnie naszkicuj wykres funkcji:

 ( |{ x1 + x2 gdy dane równanie ma dwa pierwiastki x1 i x2, f(m ) = |( 2x0 gdy dane równanie ma jeden pierwiastek x 0, 3− m gdy dane równanie nie ma pierwiastków .
Zadanie 3
(5 pkt)

Podstawą trójkąta równoramiennego jest odcinek o końcach w punktach A = (− 2,− 4) oraz B = (− 5,2) . Jedno z jego ramion zawiera się w prostej o równaniu y = x − 2 . Oblicz współrzędne trzeciego wierzchołka trójkąta.

Zadanie 4
(5 pkt)

Pierwszy wyraz nieskończonego ciągu geometrycznego (an) jest równy − 1 . Wyraz drugi, trzeci i czwarty spełniają warunek a3 − 2a 4 = 8a2 + 4 .

  • Oblicz iloraz ciągu (a ) n .
  • Określ, czy ciąg (an) jest rosnący, czy malejący.
Zadanie 5
(5 pkt)

W trójkącie prostokątnym dany jest kąt ostry o mierze α i pole P tego trójkąta. Obliczyć długość środkowej poprowadzonej z wierzchołka kąta prostego.

Zadanie 6
(5 pkt)

Udowodnij, że jeśli

  • x,y są liczbami rzeczywistymi, to x 2 + y 2 ≥ 2xy .
  • x,y,z są liczbami rzeczywistymi takimi, że x + y + z = 1 , to x2 + y2 + z2 ≥ 1 3 .
Zadanie 7
(5 pkt)

Trójkąt ABC przedstawiony na poniższym rysunku jest równoboczny, a punkty B ,C,N są współliniowe. Na boku AC wybrano punkt M tak, że |AM | = |CN | . Wykaż, że |BM | = |MN | .


PIC


Zadanie 8
(5 pkt)

Podstawą ostrosłupa ABCDS jest kwadrat ABCD . Trójkąt równoramienny ASD ma ramię długości 15 i jest prostopadły do podstawy ostrosłupa. Krawędź BS ma długość 17. Oblicz pole przekroju ostrosłupa płaszczyzną BCE , gdzie E jest środkiem krawędzi SA .

Zadanie 9
(5 pkt)

W urnie jest pewna liczba kul białych i jedna kula czarna. Losujemy jedną kulę z tej urny, zatrzymujemy ją, a następnie z pozostałych kul losujemy jedną kulę. Ile powinno być kul białych w urnie, aby prawdopodobieństwo wylosowania dwóch kul białych było równe 2 3 ?

Zadanie 10
(5 pkt)

Firma obuwnicza otrzymała zamówienie na wykonanie 720 par butów. Aby zrealizować zamówienie na czas, postanowiono wykonywać dziennie jednakową liczbę par butów. Po wykonaniu 6623 % zamówienia usprawniono produkcję tak, że dzienna produkcja wzrosła o 4 pary, zaś zamówienie zrealizowano o 5 dni wcześniej. W ciągu ilu dni planowano wykonać zamówienie?

Rozwiąż on-line Arkusz Wersja PDF
spinner