Zestaw użytkownika nr 9358_8788

Zestaw użytkownika
nr 9358_8788

Zadanie 1

Dany jest ciąg arytmetyczny (an ) dla n ≥ 1 , w którym a 7 = 1, a11 = 9 .

  • Oblicz pierwszy wyraz a1 i różnicę r ciągu (an ) .
  • Sprawdź, czy ciąg (a ,a ,a ) 7 8 11 jest geometryczny.
  • Wyznacz takie n , aby suma n początkowych wyrazów ciągu (an) miała wartość najmniejszą.
Zadanie 2

Liczby 2a− 3,a,2a+ 3 , w podanej kolejności, tworzą ciąg geometryczny. Wyznacz a .

Zadanie 3

Wyznacz wszystkie wartości x , dla których ciąg (|x − 1|,2,|x+ 3|) jest malejącym ciągiem arytmetycznym.

Zadanie 4

Cztery liczby tworzą ciąg geometryczny. Wyznacz te liczby wiedząc, że suma pierwszej i czwartej wynosi 36, a suma drugiej i trzeciej liczby wynosi 24.

Zadanie 5

Liczby x1 i x2 są pierwiastkami równania  2 x + x+ A = 0 , a liczby x 3 i x 4 są pierwiastkami równania x2 + 4x + B = 0 . Wiadomo, że ciąg (x1,x2,x3,x 4) jest ciągiem geometrycznym o wyrazach całkowitych. Wyznacz A i B .

Zadanie 6

50 wyraz ciągu arytmetycznego bn jest równy 5. Oblicz S 60 − S39 , gdzie Sn oznacza sumę n początkowych wyrazów ciągu bn .

Zadanie 7

Jednym z pierwiastków trójmianu kwadratowego  2 y = ax + bx+ c jest -0,2. Liczby a,b,c tworzą w podanej kolejności ciąg arytmetyczny, a ich suma wynosi 24. Oblicz drugi pierwiastek tego trójmianu.

Zadanie 8

Liczby x1 i x2 są różnymi miejscami zerowymi funkcji kwadratowej f (x) = x2 − (a+ 1)x + a2 . Dla jakich a ∈ R ciąg  √ -- (x 1 + x 2; 2 ;x1x2) jest geometryczny?

Zadanie 9

Cztery liczby tworzą ciąg geometryczny. Jeżeli od pierwszej z nich odejmiemy 2, od drugiej 3, od trzeciej 9, a od czwartej 25, to otrzymane różnice utworzą ciąg arytmetyczny. Znajdź te liczby.

Zadanie 10

Liczby a i b są pierwiastkami równania  2 x + 8x + s = 0 , a liczby c i d są pierwiastkami równania x2 + 72x + t = 0 . Ciąg (a,b,c,d) jest malejącym ciągiem geometrycznym. Oblicz s i t .

Zadanie 11

Trzy liczby tworzą ciąg geometryczny. Jeżeli drugą z nich zwiększymy o 8, to otrzymamy ciąg arytmetyczny. Jeżeli trzeci wyraz otrzymanego ciągu arytmetycznego zwiększymy o 64 to znów otrzymamy ciąg geometryczny. Wyznacz te liczby.

Zadanie 12

Oblicz wyrazy a2,a8,a23 ciągu arytmetycznego jeśli a1 = 8 i r = 5 .

Zadanie 13

Dany jest ciąg (bn) o wyrazie ogólnym bn = 3n − 1 . Ile wyrazów ciągu (bn) należy do przedziału (20,4 9⟩ ?

Zadanie 14

Ciąg (a,b,c) jest geometryczny, a ciągi (4a − 4,2b − 2,c − 1) i (a + 5,b + 3,c − 15) są arytmetyczne. Oblicz a,b,c .

Zadanie 15

Suma n początkowych wyrazów ciągu (an) dla każdego n ⁄= 1 określona jest wzorem Sn = 2n2 − 14n .

  • Wykaż, że ciąg (an) jest ciągiem arytmetycznym.
  • Wykaż, że jeżeli suma n początkowych wyrazów ciągu dla każdego n ≥ 1 określona jest wzorem  2 Sn = 2n − 1 4n + 1 , to ciąg ten nie jest arytmetyczny.
  • Znajdź takie trzy kolejne wyrazy ciągu (an) , aby kwadrat środkowego wyrazu był o 48 mniejszy od różnicy kwadratów wyrazów z nim sąsiadujących.
Zadanie 16

Ciąg (an) określony jest rekurencyjnie: a1 = 1 , an+1 = an − 3n + 1 dla n ≥ 1 .

  • Oblicz 4 wyraz ciągu (an) .
  • Zbadaj monotoniczność ciągu (a ) n .
Zadanie 17

Wyznacz x tak, aby ciąg  √3--- ∘ -------√3---- 3√ --- ( 25 − 2, |x − 4|, 6 25+ 2 25 + 4) był ciągiem geometrycznym.

Zadanie 18

Ciąg (an) jest arytmetyczny oraz a1 = x i a2 = 4x − 1 . Wiedząc, że a1 + a2 + a3 + a4 + a5 = 25 oblicz x oraz sumę a 11 + a12 + a13 + ⋅⋅⋅+ a25 .

Zadanie 19

Oblicz iloczyn pierwszych 99 wyrazów ciągu geometrycznego (an) , w którym a1 = − √-147- ( 2) oraz  ∘ ---√---- ∘ ----√--- q = 3− 5 − 3+ 5 . Czy iloczyn ten jest liczbą wymierną?

Zadanie 20

Znajdź wartość parametru p , dla której granica ciągu (an) określonego wzorem

 2 a = (p--−-2p-−--3)n-+-3 n −n

jest równa 4. Zbadaj monotoniczność ciągu (an) dla zanalezionej wartości p .

Arkusz Wersja PDF
spinner