/Szkoła średnia/Zadania testowe/Geometria/Geometria analityczna/Równanie prostej/Proste równoległe

Zadanie nr 1503614

Dodaj do ulubionych
Dodaj do rozwiązanych

Wskaż równanie prostej równoległej do prostej o równaniu 3x − 6y+ 7 = 0 .
A) y = 12x B) y = − 12x C) y = 2x D) y = − 2x

Rozwiązanie

Proste y = ax+ b i y = cx + d są równoległe jeżeli mają takie same współczynniki kierunkowe, czyli gdy a = c .

Dane równanie prostej możemy zapisać w postaci

6y = 3x + 7 / : 6 1 7 y = --x+ -. 2 6

Jej współczynnik kierunkowy jest więc równy 1 2 , czyli prostą do niej równoległą jest prosta  1 y = 2x .  
Odpowiedź: A

Wersja PDF
spinner