Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 9913009

Dany jest okrąg o promieniu 11 oraz punkt P oddalony o 7 od środka okręgu. Przez punkt P poprowadzono cięciwę o długości 18. W jakim stosunku punkt P podzielił tę cięciwę na dwa odcinki?

Wersja PDF
Rozwiązanie

Szkicujemy opisaną sytuację.


PIC


Jeżeli oznaczymy CE = x , to DE = 18− x .

Sposób I

Korzystamy z twierdzenia o siecznych okręgu.

AE ⋅ BE = CE ⋅DE 4⋅1 8 = x(18 − x ) x2 − 18x + 72 = 0 2 Δ = 18 − 4⋅72 = 36 1-8−-6- 18+--6- x = 2 = 6 lub x = 2 = 12 .

Mamy wtedy odpowiednio 18 − x = 12 lub 1 8− x = 6 . Stosunek podziału jest więc równy 2 lub 1 2 .

Sposób II

Zauważmy, że ∡BAC = ∡BDC oraz ∡ABD = ∡ACD (kąty wpisane oparte na tych samych łukach). To oznacza, że trójkąty AEC i DEB są podobne. W szczególności

AE--= DE-- CE BE AE ⋅BE = DE ⋅CE .

Dalszą część rozwiązania przeprowadzamy dokładnie tak samo jak w pierwszym sposobie.  
Odpowiedź: 2 lub 12

Wersja PDF