/Szkoła średnia/Geometria/Geometria analityczna/Okrąg

Zadanie nr 9553446

Dodaj do ulubionych
Dodaj do rozwiązanych

Okrąg o1 o środku w punkcie S 1 jest określony równaniem (x − 6)2 + (y + 1)2 = 1 6 . Okrąg o2 ma środek w punkcie S 2 takim, że  −→ S 1S2 = [− 4,4] . Promienie tych okręgów są sobie równe. Figura F składa się z dwóch okręgów: o1 oraz o2 . Punkty M i N są punktami przecięcia figury F z tą z jej osi symetrii, która jest prostą o dodatnim współczynniku kierunkowym. Wyznacz punkt K , leżący na jednej z osi symetrii figury F , taki, że pole trójkąta MNK jest równe 40.

Rozwiązanie

Rozwiązanie tego zadania jest dostępne tylko dla użytkowników z wykupionym abonamentem.
Nie chcesz się rejestrować ani opłacać abonamentu? Zapłać przelewem 7,90 zł lub telefonicznie 9,90 zł, a otrzymasz dwudziestominutowy dostęp do wszystkich materiałów dostępnych w portalu.
spinner