Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt/Równoboczny

Wyszukiwanie zadań

Na boku LM trójkąta równobocznego KLM obrano taki punkt A , że |AM | : |AL | = 4 : 1 .

  • Oblicz stosunek pól trójkątów KLA i KAM .
  • Oblicz stosunek promieni okręgów opisanych na tych trójkątach.
  • Wyznacz sin∡LKA .

Trójkąty ABC i DEC są przystającymi trójkątami równobocznymi o boku długości 6. Odcinki CD i AB są prostopadłe, a odcinek DE przecina odcinki AB i BC w punktach S i T odpowiednio (zobacz rysunek). Oblicz długość odcinka ST .


PIC


Trójkąt ABC przedstawiony na poniższym rysunku jest równoboczny, a punkty B ,C,N są współliniowe. Na boku AC wybrano punkt M tak, że |AM | = |CN | . Wykaż, że |BM | = |MN | .


PIC


Dany jest trójkąt równoboczny ABC . Okrąg o średnicy AB przecina bok BC w punkcie D .


PIC


Wykaż, że |CD | = |DB | .

Dany jest trójkąt równoboczny ABC o boku długości 24. Punkt E leży na boku AB , a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).


PIC


Oblicz długość odcinka EF .

Strona 3 z 3
spinner