Okrąg przecina boki czworokąta kolejno w punktach (zobacz rysunek).
Wykaż, że jeżeli , to w czworokąt można wpisać okrąg.
Okrąg przecina boki czworokąta kolejno w punktach (zobacz rysunek).
Wykaż, że jeżeli , to w czworokąt można wpisać okrąg.
Dany jest czworokąt wypukły niebędący równoległobokiem. Punkty są odpowiednio środkami boków i . Punkty są odpowiednio środkami przekątnych i . Uzasadnij, że .
Dany jest czworokąt wypukły niebędący równoległobokiem. Punkty są odpowiednio środkami boków i . Punkty są odpowiednio środkami przekątnych i . Uzasadnij, że czworokąt jest równoległobokiem.
Wykaż, że jeżeli w czworokącie dwusieczne kątów przy wierzchołkach i przecinają dwusieczne kątów przy wierzchołkach i w czterech różnych punktach, to punkty te leżą na pewnym okręgu.
Udowodnij, że jeżeli środki boków dwóch czworokątów wypukłych pokrywają się, to pola tych czworokątów są równe.
W czworokącie spełniony jest warunek . Wykaż, że na czworokącie można opisać okrąg.
Dany jest taki czworokąt wypukły , że okręgi wpisane w trójkąty i są styczne. Wykaż, że w czworokąt można wpisać okrąg.
Udowodnij, że w czworokącie wpisanym w okrąg suma iloczynów długości przeciwległych boków jest równa iloczynowi długości przekątnych (twierdzenie Ptolemeusza).
Dany jest czworokąt wypukły niebędący równoległobokiem. Punkty są odpowiednio środkami boków i . Punkty są odpowiednio środkami przekątnych i . Uzasadnij, że jeżeli odcinki i są prostopadłe, to .
Wykaż, że jeżeli odcinki łączące środki przeciwległych boków czworokąta są prostopadłe, to przekątne tego czworokąta mają równe długości.
Uzasadnij, że środki boków dowolnego czworokąta są wierzchołkami równoległoboku. Jaka figurę otrzymamy, łącząc kolejno środki boków: a) rombu, b) prostokąta, c) kwadratu?
Uzasadnij, że środki boków dowolnego czworokąta są wierzchołkami równoległoboku.
Przekątne czworokąta wypukłego przecinają się w punkcie . Wiadomo, że trójkąty i mają równe pola, długość boku jest równa 4, a przekątna jest zawarta w dwusiecznej kąta . Oblicz długość boku .
Przez każde dwa sąsiednie wierzchołki czworokąta wpisanego w okrąg poprowadzono okrąg (zobacz rysunek).
Wykaż, że punkty , w których przecinają się te okręgi, leżą na jednym okręgu.
Przedłużenia przeciwległych boków czworokąta wpisanego w okrąg tworzą kąty ostre o miarach i . Oblicz miary kątów czworokąta.