Wysokość rombu dzieli bok tego rombu tak, że (zobacz rysunek).
Oblicz wartość wyrażenia
gdzie i są dwoma sąsiednimi kątami wewnętrznymi rombu .
Wysokość rombu dzieli bok tego rombu tak, że (zobacz rysunek).
Oblicz wartość wyrażenia
gdzie i są dwoma sąsiednimi kątami wewnętrznymi rombu .
Na bokach i rombu wybrano odpowiednio punkty i w ten sposób, że odcinki i są równoległe do przekątnych rombu. Wykaż, że odcinek przechodzi przez punkt przecięcia przekątnych rombu.
Kąt ostry rombu ma miarę . Na bokach i wybrano punkty i w ten sposób, że . Uzasadnij, że trójkąt jest trójkątem równobocznym.
Oblicz długość boku rombu wiedząc, że prosta poprowadzona przez jeden z jego wierzchołków odcina na przedłużeniach dwóch jego boków odcinki o długościach 4 i 9.
Oblicz pole rombu , wiedząc, że długości promieni okręgów opisanych na trójkątach i odpowiednio są równe i .
Przekątna rombu przecina jego wysokość , poprowadzoną na bok , w punkcie . Oblicz pole rombu , jeśli wiadomo, że oraz .