Na bokach i
rombu
wybrano odpowiednio punkty
i
w ten sposób, że odcinki
i
są równoległe do przekątnych rombu. Wykaż, że odcinek
przechodzi przez punkt przecięcia przekątnych rombu.
Kąt ostry rombu ma miarę
. Na bokach
i
wybrano punkty
i
w ten sposób, że
. Uzasadnij, że trójkąt
jest trójkątem równobocznym.
Oblicz długość boku rombu wiedząc, że prosta poprowadzona przez jeden z jego wierzchołków odcina na przedłużeniach dwóch jego boków odcinki o długościach 4 i 9.
Oblicz pole rombu , wiedząc, że długości promieni okręgów opisanych na trójkątach
i
odpowiednio są równe
i
.
Przekątna rombu
przecina jego wysokość
, poprowadzoną na bok
, w punkcie
. Oblicz pole rombu
, jeśli wiadomo, że
oraz
.