Zadanie nr 9553446
Okrąg o środku w punkcie jest określony równaniem . Okrąg ma środek w punkcie takim, że . Promienie tych okręgów są sobie równe. Figura składa się z dwóch okręgów: oraz . Punkty i są punktami przecięcia figury z tą z jej osi symetrii, która jest prostą o dodatnim współczynniku kierunkowym. Wyznacz punkt , leżący na jednej z osi symetrii figury , taki, że pole trójkąta jest równe 40.
Rozwiązanie
Rozwiązanie tego zadania jest dostępne tylko dla użytkowników z wykupionym abonamentem.
Nie chcesz się rejestrować ani opłacać abonamentu? Zapłać przelewem 7,90 zł lub telefonicznie 9,90 zł, a otrzymasz dwudziestominutowy dostęp do wszystkich materiałów dostępnych w portalu.