Przez środek okręgu wpisanego w trójkąt poprowadzono prostą równoległą do boku , która przecina boki i odpowiednio w punktach i .
Wykaż, że .
Przez środek okręgu wpisanego w trójkąt poprowadzono prostą równoległą do boku , która przecina boki i odpowiednio w punktach i .
Wykaż, że .
Okrąg wpisany w trójkąt jest styczny do boków i w punktach i odpowiednio. Na bokach i tego trójkąta wybrano punkty i w ten sposób, że odcinek jest styczny do okręgu wpisanego w trójkąt (zobacz rysunek).
Wykaż, że jeżeli , i , to trójkąt jest rozwartokątny.
Kąty w trójkącie mają miary: . Wykaż, że długości boków tego trójkąta spełniają równość: .
Okrąg wpisany w trójkąt jest styczny do boków odpowiednio w punktach . Punkty są odpo- wiednio środkami okręgów wpisanych w trójkąty . Dowieść, że punkty i są symetryczne względem prostej .