Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Geometria analityczna/Wektory

Wyszukiwanie zadań

Udowodnij, że jeżeli punkt D jest środkiem ciężkości trójkąta, to  −→ −→ −→ → DA + DB + DC = 0 .

Długości wektorów → → a ,b wynoszą odpowiednio 3 i 5. Ponadto znamy ich iloczyn skalarny → → a ∘ b = − 2 . Obliczyć iloczyn skalarny wektorów → → p ∘ q , gdzie  → →p = →a − b ,  → →q = 2→a + 3b .

W czworokącie ABCD przekątne przecinają się w punkcie o współrzędnych P = (− 3,7) w taki sposób, że |P C| : |AP | = |PD | : |BP | = 1 : 3 . Wiedząc, że − → AC = [4,6] i −→ BD = [− 10,− 2] , oblicz współrzędne wierzchołków tego czworokąta. Uzasadnij, że czworokąt ABCD jest trapezem.

W prostokącie ABCD dane są wierzchołek C (− 2 ,2 ) i wektor  → AB = [3 ,3] . Wyznacz równania prostych, zawierających przekątne tego prostokąta, jeśli wiadomo, że wierzchołek A należy do prostej o równaniu x − 2y = 0 .

W prostokącie ABCD dany jest wierzchołek C (3;4) oraz −→ AB = [4;3] . Znajdź równania przekątnych wiedząc, że wierzchołek A należy do prostej x − y = 5 .

Znajdź punkt dzielący wektor  → AB o końcach A = (− 3;1) , B = (2,− 2) w stosunku -4.

Znajdź wektor jednostkowy, równoległy do wektora → u = [3;− 4] .

Na bokach AB i AC trójkąta ABC wybrano punkty E i D w ten sposób, że |AE | = 2|EB | i |AD | = |DC | . Punkt M jest punktem wspólnym odcinków CE i BD .


PIC


  • Przedstaw każdy z wektorów −→ − → BC ,BD oraz −→ CE w postaci  → p ⋅b + q ⋅→c , gdzie → −→ → b = AB ,→c = AC oraz p,q ∈ R .
  • Korzystając z równości −→ −→ −→ BC + CM = BM oblicz w jakim stosunku punkt M dzieli odcinki BD i CE .

W trójkącie ABC dane są |AB | = 5 , |AC | = 6 oraz iloczyn skalarny  → → AB ∘ AC = 20 . Oblicz miarę kąta ∡CAB oraz pole tego trójkąta.

Za pomocą rachunku wektorowego pokazać, że środki boków dowolnego czworokąta tworzą wierzchołki równoległoboku.

W trójkącie ABC dane są  → |AB | = 7 ,  → → |AB + AC | = 13 oraz → → AB ∘ AC = 20 . Oblicz długość boku AC , oraz miarę kąta ∡CAB .

Punkt P jest punktem wspólnym przekątnych trapezu ABCD , w którym AB ∥ CD oraz  −→ −→ −→ D = (1 0,− 9),AB = [12,21],CB = [0,13],CP = [− 3,− 2] . Oblicz współrzędne pozostałych wierzchołków trapezu ABCD .

Punkty A ,B,C ,D ,E są kolejnymi wierzchołkami pięciokąta, w którym  → → → → AB = [2 ,−3 ], AC = [6,− 2], ED = [3,− 1],CD = [0,4] . Znajdź współrzędne wektorów  → EA i  → BC .

Trójkąt jest rozpięty na wektorach → → a ,b . Wyrazić środkowe tego trójkąta przez wektory → → a,b .

Punkt S jest punktem przecięcia się przekątnych równoległoboku ABCD , a punkt P jest takim punktem boku BC tego równoległoboku, że |BP | : |P C| = 3 . Oblicz współrzędne spodka wysokości opuszczonej z wierzchołka A tego równoległoboku na prostą CD , jeżeli  −→ AB = [4,4] , −→ DS = [3,− 3] i  ( ) P = 7, 7 2 2 .

W kartezjańskim układzie współrzędnych (x ,y ) czworokąt ABCD jest równoległobokiem takim, że −→ BD = [− 21,− 7] i −→ DC = [15,8 ] . Oblicz pole tego równoległoboku.

W czworokącie ABCD dane są −→ −→ AB = [6,− 3], DA = [− 8,− 7] oraz środek S = (3,2) przekątnej DB . Wyznacz współrzędne rzutu prostopadłego punktu D na prostą AB .

Dane są wektory → a = [1,− 2] , → b = [− 2,− 1] , → c = [3,4] . Dobierz wartości parametrów p ,q ∈ R tak, aby wektory −→ → AB = p a , −→ → BC = qb i −→ → CA = c tworzyły trójkąt ABC .

Punkt S = (0 ;0) jest środkiem boku AD równoległoboku ABCD . Wiadomo też, że −→ AB = [4;3] oraz −→ BC = [6;2] . Wyznacz wierzchołki tego równoległoboku.

Wykaż, że dla dowolnych punktów płaszczyzny A ,B ,C ,D ,E ,F spełniona jest równość.

−→ −→ −→ −→ −→ −→ AB + CD + EF = AD + CF + EB .
Strona 1 z 2
spinner