Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

W prostokącie ABCD , w którym stosunek długości boków AB i BC jest równy 4:3, poprowadzono dwusieczne kątów ADB i BDC . Dwusieczne te przecinają boki AB i CB odpowiednio w punktach K i M . Oblicz stosunek pola prostokąta ABCD do pola trójkąta DKM .

Punkt E jest środkiem boku BC prostokąta ABCD , w którym AB > BC . Punkt F leży na boku CD tego prostokąta oraz ∡AEF = 90 . Udowodnij, że ∡BAE = ∡EAF .

Punkt M leży wewnątrz prostokąta ABCD (zob. rysunek). Udowodnij, że AM 2 + CM 2 = BM 2 + DM 2 .


PIC


Oblicz jakie długości powinny mieć boki prostokąta o polu równym S , aby jego przekątna miała najmniejszą możliwą długość. Oblicz długość tej przekątnej.

Z przeciwległych wierzchołków prostokąta poprowadzono odcinki prostopadłe do przekątnej. Odcinki te dzielą przekątną na trzy części. Każda z nich jest odcinkiem o długości 4 cm. Oblicz pole tego prostokąta.

W prostokąt ABCD wpisany jest trójkąt równoboczny AKL (patrz rysunek). Wierzchołek K leży na boku BC (K ⁄= B i K ⁄= C ), wierzchołek L leży na boku DC (L ⁄= D i L ⁄= C ). Udowodnij, że pole powierzchni trójkąta KLC równe jest sumie pól trójkątów ABK i DLA .


PIC


Dany jest prostokąt ABCD . Okrąg wpisany w trójkąt BCD jest styczny do przekątnej BD w punkcie N . Okrąg wpisany w trójkąt ABD jest styczny do boku AD w punkcie M , a środek S tego okręgu leży na odcinku MN , jak na rysunku.


PIC


Wykaż, że |MN | = |AD | .

W prostokącie ABCD wierzchołek D połączono odcinkami ze środkami E i F boków AB i BC , zaś M i N to punkty przecięcia tych odcinków z przekątną AC .

  • Uzasadnij, że odcinki AM ,MN i NC są jednakowej długości.
  • Uzasadnij, że trójkąty AEM i CNF mają równe pola.

PIC

Na bokach AB i BC prostokąta ABCD wybrano punkty K i L w ten sposób, że trójkąt DKL jest ostrokątny oraz |∡KDL | = α . Odcinek DM jest wysokością trójkąta DKL .


PIC


Wykaż, że |∡AMC | = 90 ∘ + α .

Punkt F jest środkiem boku AD prostokąta ABCD , w którym AB > BC . Punkt E jest takim punktem boku AB tego prostokąta, że prosta CF jest dwusieczną kąta DCE . Wykaż, że trójkąt CF E jest prostokątny.

Dany jest prostokąt ABCD , w którym |AB | = 8 i |AD | = 6 . Na boku AB zbudowano trójkąt równoboczny ABM (patrz rysunek). Oblicz obwód trójkąta KLM .


PIC