Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

W kwadrat ABCD o boku długości 2a wpisano okrąg. Oblicz długość cięciwy wyciętej przez ten okrąg z odcinka łączącego wierzchołek A ze środkiem boku CD .

Punkt P należy do okręgu opisanego na kwadracie ABCD . Wykaż, że wyrażenie |PA |2 + |P B|2 + |PC |2 + |PD |2 ma stałą wartość, niezależną od wyboru punktu P .

Na bokach AD i DC kwadratu ABCD o polu 1 wybrano punkty K i L w ten sposób, że |∡KBL | = 45∘ .


PIC


Oblicz odległość punktu B od prostej KL .

Na rysunku przedstawiono dwa kwadraty: ABCD i DEF G , przy czym punkty E i G należą do odcinków AD i CD odpowiednio. Przedstawiono również okrąg, który jest styczny do dwóch boków kwadratu ABCD i przechodzi przez punkt F . Wykaż, że jeżeli |CG | = 2 |GD | = 4 , to promień okręgu jest równy  √ -- 8 − 4 2 .


PIC


Czworokąty ABCD i AP QR są kwadratami. Udowodnij, że |BP | = |DR | .


PIC


Na zewnątrz kwadratu ABCD na bokach AB i BC zbudowano trójkąty równoboczne AEB i BF C . Uzasadnij, że proste DF i CE są prostopadłe.


PIC