Punkt jest środkiem boku prostokąta , w którym . Punkt leży na boku tego prostokąta oraz . Udowodnij, że .
/Konkursy/Zadania/Geometria/Planimetria/Prostokąt/Różne
Punkt leży wewnątrz prostokąta (zob. rysunek). Udowodnij, że .
Oblicz jakie długości powinny mieć boki prostokąta o polu równym , aby jego przekątna miała najmniejszą możliwą długość. Oblicz długość tej przekątnej.
Dany jest prostokąt . Okrąg wpisany w trójkąt jest styczny do przekątnej w punkcie . Okrąg wpisany w trójkąt jest styczny do boku w punkcie , a środek tego okręgu leży na odcinku , jak na rysunku.
Wykaż, że .
W prostokącie wierzchołek połączono odcinkami ze środkami i boków i , zaś i to punkty przecięcia tych odcinków z przekątną .
- Uzasadnij, że odcinki i są jednakowej długości.
- Uzasadnij, że trójkąty i mają równe pola.
Na bokach i prostokąta wybrano punkty i w ten sposób, że trójkąt jest ostrokątny oraz . Odcinek jest wysokością trójkąta .
Wykaż, że .
Punkt jest środkiem boku prostokąta , w którym . Punkt jest takim punktem boku tego prostokąta, że prosta jest dwusieczną kąta . Wykaż, że trójkąt jest prostokątny.
Dany jest prostokąt , w którym i . Na boku zbudowano trójkąt równoboczny (patrz rysunek). Oblicz obwód trójkąta .