Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe

Wyszukiwanie zadań

Ze zbioru liczb 3, 4, 1, 5, 1, 3, 1 usunięto jedną liczbę w ten sposób, że mediana tego zbioru liczb nie uległa zmianie. Usunięta liczba to
A) 1 B) 3 C) 4 D) 5

Równanie  2 x + 6x + c = 0 nie ma rozwiązania, gdy
A) c ∈ (− ∞ ,9) B) c ∈ (9,+ ∞ ) C) c ∈ ⟨9,+ ∞ ) D) c ∈ (− ∞ ,9⟩

Ukryj Podobne zadania

Równanie  2 x + 6x − c = 0 nie ma rozwiązania, gdy
A) c ∈ (− ∞ ,− 9) B) c ∈ (9,+ ∞ ) C) c ∈ ⟨− 9,+ ∞ ) D) c ∈ (− ∞ ,9⟩

Równanie  2 x + 4x + c = 0 nie ma rozwiązania, gdy
A) c ∈ (4,+ ∞ ) B) c ∈ (− ∞ ,4) C) c ∈ ⟨4,+ ∞ ) D) c ∈ (− ∞ ,4⟩

W równoległoboku ABCD przekątne przecinają się w punkcie S . Niech P1 oznacza pole trójkąta ASD , natomiast P2 oznacza pole trójkąta DSC . Wówczas:
A) P = P 1 2 B) P > P 1 2 C) P1 < P 2 D) P1 = P 2 tylko wtedy, gdy |AC | = |DB |

Ukryj Podobne zadania

W równoległoboku ABCD przekątne przecinają się w punkcie S . Niech P1 oznacza pole trójkąta ASD , natomiast P2 oznacza pole trójkąta ABS . Wówczas:
A) P > P 1 2 B) P = P 1 2 C) P1 < P 2 D) P1 = P 2 tylko wtedy, gdy |AC | = |DB |

Cięciwy AB i CD okręgu o środku O przecinają się w punkcie P i tworzą trójkąty AP C i BP D .


PIC


Trójkąty AP C i BP D

A) podobne,B) przystające,

ponieważ trójkąty te mają równe

1) pola,2) miary kątów,3) długości boków,

Gdy przesuniemy wykres funkcji f(x) = 3x − 2 o 3 jednostki w prawo i 2 jednostki w górę, to otrzymamy wykres funkcji opisanej wzorem
A) y = 3x − 9 B) y = 3x − 13 C) y = 3x + 9 D) y = 3x+ 5

Ukryj Podobne zadania

Aby otrzymać wykres funkcji y = 5(x + 1 )− 7 , należało wykres funkcji y = 5x przesunąć
A) o 1 jednostkę w lewo i 7 ku dołowi B) o 1 jednostkę w prawo i 7 ku górze
C) o 1 jednostkę w prawo i 7 ku dołowi D) o 1 jednostkę w lewo i 7 ku górze

Gdy przesuniemy wykres funkcji f(x) = 3x − 2 o 3 jednostki w lewo i 2 jednostki w dół, to otrzymamy wykres funkcji opisanej wzorem
A) y = 3x − 9 B) y = 3x − 13 C) y = 3x + 9 D) y = 3x+ 5

Punkty K = (4,− 10) i L = (b,2) są końcami odcinka KL . Pierwsza współrzędna środka odcinka KL jest równa (− 12) . Wynika stąd, że
A) b = − 2 8 B) b = − 14 C) b = − 24 D) b = − 10

Wykres funkcji  x−3 f(x ) = 2 przedstawiony jest na rysunku:


PIC


Ukryj Podobne zadania

Wykres funkcji  ( )x −3 f(x ) = 12 przedstawiony jest na rysunku:


PIC


Wykres funkcji  −x f(x ) = 3⋅3 przedstawiony jest na rysunku:


PIC


Wykres funkcji  ( )x −3 f(x ) = 12 przedstawiony jest na rysunku


PIC


Liczba  √ -- 4 ( 2 + 1 ) jest większa od liczby  √ -- 4 ( 2− 1) o
A) 2 B)  √ -- 12 2 C)  √ -- 24 2 D)  √ -- 4 2

Pole powierzchni bocznej walca wynosi  2 18π cm . Wysokość walca jest 3 razy większa od promienia podstawy. Zatem pole powierzchni podstawy tego walca jest równe
A) 3π cm 2 B) 6π cm 2 C)  2 9π cm D)  2 12π cm

Odcinek AB jest średnicą okręgu (rysunek).


PIC


Miara kąta α jest równa
A) 58∘ B) 5 6∘ C) 60∘ D) 116∘

Ciąg arytmetyczny (an) jest określony dla każdej liczby naturalnej n ≥ 1 . Piąty wyraz tego ciągu jest o 12 większy od trzeciego wyrazu. Wtedy różnica a17 − a12 jest równa
A) 60 B) 6 C) 30 D) 24

Strona 184 z 184
spinner