Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Czworokąt/Trapez/Równoramienny opisany na okręgu/Udowodnij...

Wyszukiwanie zadań

Długości podstaw trapezu równoramiennego są równe a oraz b , przy czym a > b . W ten trapez można wpisać okrąg. Wykaż, że pole tego trapezu jest większe od a ⋅b .

Pole trapezu równoramiennego opisanego na okręgu jest równe S , a kąt ostry przy podstawie ma miarę α . Wykaż, że ramię tego trapezu ma długość ∘ ---- -S-- sinα .

Na okręgu o promieniu r opisano trapez równoramienny, którego kąt ostry ma miarę α . Wykaż, że promień okręgu opisanego na tym czworokącie jest równy  √ ------- r--sin2α+-1 R = sin2α .

Dany jest trapez równoramienny ABCD o obwodzie l i podstawach AB oraz CD takich, że |AB | > |CD | . Trapez jest opisany na okręgu i wpisany w okrąg, a przekątna AC trapezu ma długość d (zobacz rysunek).


PIC


Wykaż, że promień R okręgu opisanego na trapezie ABCD jest równy -√--dl---- 2 16d2−l2 .

Udowodnij, że średnica okręgu wpisanego w trapez równoramienny, ma długość równą średniej geometrycznej długości podstaw trapezu.

Ukryj Podobne zadania

Trapez równoramienny ABCD o podstawach AB i CD jest opisany na okręgu o promieniu r . Wykaż, że 4r2 = |AB |⋅|CD | .

spinner