Na obrzeżach miasta znajduje się jezioro, na którym postanowiono stworzyć tor regatowy. Na podstawie dostępnych map wymodelowano w pewnej skali kształt linii brzegowej jeziora w kartezjańskim układzie współrzędnych za pomocą fragmentów wykresów funkcji oraz (zobacz rysunek).
Funkcje oraz są określone wzorami oraz . Początek toru postanowiono zlokalizować na brzegu jeziora w miejscu, któremu odpowiada w układzie współrzędnych punkt . Koniec toru regatowego należy umieścić na linii brzegowej. Oblicz współrzędne punktu , w którym należy zlokalizować koniec toru, aby długość toru (tj. odległość końca toru od początku ) była możliwie największa. Oblicz długość najdłuższego toru.
Przy rozwiązywaniu zadania możesz skorzystać z tego, że odległość dowolnego punktu leżącego na wykresie funkcji od punktu wyraża się wzorem
gdzie jest pierwszą współrzędną punktu .