Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Geometria analityczna/Zadania na ekstremum/Największa długość

Wyszukiwanie zadań

Na obrzeżach miasta znajduje się jezioro, na którym postanowiono stworzyć tor regatowy. Na podstawie dostępnych map wymodelowano w pewnej skali kształt linii brzegowej jeziora w kartezjańskim układzie współrzędnych (x,y) za pomocą fragmentów wykresów funkcji f oraz g (zobacz rysunek).


PIC


Funkcje f oraz g są określone wzorami f (x) = x2 oraz  ( )2 g(x) = − 1 x− 1 + 4 2 2 . Początek toru postanowiono zlokalizować na brzegu jeziora w miejscu, któremu odpowiada w układzie współrzędnych punkt P = (−1 ,1) . Koniec toru regatowego należy umieścić na linii brzegowej. Oblicz współrzędne punktu K , w którym należy zlokalizować koniec toru, aby długość toru (tj. odległość końca K toru od początku P ) była możliwie największa. Oblicz długość najdłuższego toru.

Przy rozwiązywaniu zadania możesz skorzystać z tego, że odległość dowolnego punktu R leżącego na wykresie funkcji g od punktu P wyraża się wzorem

 ∘ -------------------------------- 1 1 13 39 593 |PR | = -x 4 − -x3 − ---x2 + ---x+ ----, 4 2 8 8 6 4

gdzie x jest pierwszą współrzędną punktu R .

Ukryj Podobne zadania

Na obrzeżach miasta znajduje się jezioro, na którym postanowiono stworzyć tor regatowy. Na podstawie dostępnych map wymodelowano w pewnej skali kształt linii brzegowej jeziora w kartezjańskim układzie współrzędnych (x,y) za pomocą fragmentów wykresów funkcji f oraz g (zobacz rysunek).


PIC


Funkcje f oraz g są określone wzorami f(x) = − 12(x− 1)2 + 72 oraz g (x ) = 1 (x− 5)2 − 25 4 2 16 . Początek toru postanowiono zlokalizować na brzegu w miejscu, któremu odpowiada w układzie współrzędnych punkt P = (4,− 1) . Koniec toru regatowego należy umieścić na linii brzegowej. Oblicz współrzędne punktu K , w którym należy zlokalizować koniec toru, aby długość toru (tj. odległość końca K toru od początku P ) była możliwie największa. Oblicz długość najdłuższego toru.

Przy rozwiązywaniu zadania możesz skorzystać z tego, że odległość dowolnego punktu R leżącego na wykresie funkcji f od punktu P wyraża się wzorem

 ∘ --------------------- 1 |P R| = -x 4 − x 3 − 2x 2 + 3 2, 4

gdzie x jest pierwszą współrzędną punktu R .

W układzie współrzędnych dany jest punkt A = (9,4) . Na okręgu o równaniu (x − 1)2 + (y − 2)2 = 1 7 wyznacz współrzędne punktu B , dla którego odległość |AB | jest największa.

Wyznacz wszystkie wartości parametru m ∈ R , dla których równanie

 2 2 2 x + y + 6mx − 4y + 1 0m − 4m + 2 = 0

opisuje okrąg. Jaka jest największa możliwa długość tego okręgu?

spinner