Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Graniastosłup

Wyszukiwanie zadań

Przez punkt P krawędzi bocznej AD graniastosłupa prawidłowego trójkątnego ABCDEF o krawędzi podstawy równej a poprowadzono dwie płaszczyzny. Jedna przechodzi przez przeciwległą krawędź dolnej podstawy i jest nachylona do tej podstawy pod kątem α , a druga przechodzi przez przeciwległą krawędź górnej podstawy i jest nachylona do tej podstawy pod kątem β (zobacz rysunek).


PIC


Udowodnij, że objętość ostrosłupa BCF EP jest równa

a3sin(α-+-β)- 4 cosα cosβ

Oblicz objętość i pole powierzchni graniastosłupa prostego, którego podstawą jest romb o przekątnych długości 6 cm i 8 cm, którego przekątna ściany bocznej tworzy z krawędzią podstawy kąt o mierze 45∘ .

Podstawą graniastosłupa prostego ABCDEF jest trójkąt ABC , w którym |∡ABC | = 120∘ oraz |AB | = 2 (zobacz rysunek). Trójkąt BF D jest równoboczny. Oblicz pole powierzchni całkowitej tego graniastosłupa.


PIC


Na rysunku przedstawiono fragment siatki graniastosłupa prawidłowego trójkątnego.


PIC


Pole narysowanego trójkąta jest równe  √ -- 16 3 cm 2 , a pole prostokąta jest równe  √ -- 24 3 cm 2 . Oblicz objętość tego graniastosłupa.

Podstawą graniastosłupa prostego ABCDEF GH jest romb o boku długości 5, polu 24 i kącie ostrym ∡BAD . Graniastosłup ten przecięto płaszczyzną AKLM w ten sposób, że otrzymany przekrój jest rombem o kącie ostrym |∡KAM | = 45 ∘ (zobacz rysunek). Oblicz pole tego przekroju.


PIC


Pole powierzchni całkowitej graniastosłupa prawidłowego sześciokątnego o krawędzi podstawy a wyraża się wzorem  √ -- √ -- (3 3 − 6)a2 + 12 3a . Wyznacz sumę długości krawędzi podstawy i wysokości tego graniastosłupa.

Graniastosłup prawidłowy czworokątny przecięto płaszczyzną, która zawiera krawędź podstawy oraz przechodzi przez środek przeciwległej krawędzi bocznej (zobacz rysunek).


PIC


Oblicz jaki jest stosunek objętości dwóch brył na jakie został podzielony ten graniastosłup.

W graniastosłupie prawidłowym trójkątnym poprowadzono płaszczyznę r wyznaczoną przez wysokość dolnej podstawy i ten z wierzchołków górnej podstawy, że płaszczyzna r z płaszczyzną podstawy graniastosłupa tworzy kąt o mierze α ⁄= 90∘ . Pole przekroju graniastosłupa wyznaczonego przez płaszczyznę r jest równe S . Oblicz objętość graniastosłupa.

Trójkąt o bokach 3, 5, 7 jest podstawą graniastosłupa prostego, w który wpisano kulę. Oblicz objętość tego graniastosłupa.

Podstawą ostrosłupa trójkątnego ABCS jest trójkąt prostokątny ABC , w którym |AB | = 10 . Stosunek długości przyprostokątnej AC tego trójkąta do długości przyprostokątnej BC jest równy 4:3. Wszystkie krawędzie boczne ostrosłupa mają długość 13. Oblicz objętość tego ostrosłupa.


PIC


Objętość graniastosłupa prawidłowego trójkątnego jest równa 8, a przekątne dwóch ścian bocznych poprowadzone z jednego wierzchołka tworzą kąt α . Oblicz długość krawędzi podstawy tego graniastosłupa.

Kacper i Hela otrzymali identyczne zestawy 138 drewnianych klocków, w których każdy klocek jest sześcianem o krawędzi 2 cm. Kacper ze swoich klocków zbudował graniastosłup prawidłowy czworokątny i zostały mu dwa klocki, których nie było gdzie dołożyć. Hela ze swoich klocków zbudowała trzy identyczne graniastosłupy prawidłowe czworokątne i zostały jej trzy klocki, których nie było gdzie dołożyć. Oblicz stosunek pola powierzchni całkowitej graniastosłupa zbudowanego przez Kacpra do pola powierzchni całkowitej jednego z graniastosłupów zbudowanych przez Helę. Wynik podaj w postaci ułamka nieskracalnego.

Każda krawędź graniastosłupa prawidłowego trójkątnego ABCDEF ma długość 4 (zobacz rysunek).


PIC


Oblicz odległość wierzchołka F tego graniastosłupa od płaszczyzny DEC .

W graniastosłupie prawidłowym sześciokątnym poprowadzono płaszczyznę, która przechodzi przez dłuższą przekątną dolnej podstawy oraz przez jedną z krawędzi górnej podstawy. Płaszczyzna ta wyznacza przekrój graniastosłupa, który jest trapezem równoramiennym. Wiedząc, że w trapez ten można wpisać okrąg o promieniu 1, oblicz objętość graniastosłupa.

Podstawą graniastosłupa prostego jest trójkąt prostokątny o przyprostokątnych mających długości 1 i √ -- 3 . Podaj miary kątów między sąsiednimi ścianami bocznymi tego graniastosłupa.

Dany jest graniastosłup prosty ABCDEF , którego podstawą jest trójkąt ABC o kątach |∡CAB | = α i |∡CBA | = β . Przekątne CE i CD ścian bocznych tworzą kąt o mierze δ takiej, że tgδ = 490 (zobacz rysunek).


PIC


Pole trójkąta CED jest równe 4, a pole trójkąta CBA jest równe 12 tg(α + β ) . Oblicz wysokość h tego graniastosłupa.

Liczba wszystkich przekątnych podstaw i ścian bocznych pewnego graniastosłupa jest równa 110. Oblicz, ile krawędzi ma podstawa tego graniastosłupa.

Podstawą graniastosłupa prostego ABCDEF jest trójkąt równoramienny ABC , w którym |AC | = |BC | , |AB | = 8 . Wysokość trójkąta ABC , poprowadzona z wierzchołka C , ma długość 3. Przekątna CE ściany bocznej tworzy z krawędzią CB podstawy ABC kąt 60∘ (zobacz rysunek).


PIC


Oblicz pole powierzchni całkowitej oraz objętość tego graniastosłupa.

Podstawą graniastosłupa prostego jest trójkąt prostokątny równoramienny. Kąt między przekątnymi, wychodzącymi z tego samego wierzchołka, dwóch prostopadłych ścian bocznych, ma miarę 60 ∘ . Wiedząc, że objętość tego graniastosłupa jest równa 32 cm 3 , oblicz pole powierzchni całkowitej tej bryły.

Oblicz objętość graniastosłupa prostego, którego podstawą jest romb o przekątnych długości 16 cm i 30 cm, a krawędź boczna jest dwa razy dłuższa od krawędzi podstawy.

Strona 1 z 6
spinner