Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Graniastosłup

Wyszukiwanie zadań

Przez punkt P krawędzi bocznej AD graniastosłupa prawidłowego trójkątnego ABCDEF o krawędzi podstawy równej a poprowadzono dwie płaszczyzny. Jedna przechodzi przez przeciwległą krawędź dolnej podstawy i jest nachylona do tej podstawy pod kątem α , a druga przechodzi przez przeciwległą krawędź górnej podstawy i jest nachylona do tej podstawy pod kątem β (zobacz rysunek).


PIC


Udowodnij, że objętość ostrosłupa BCF EP jest równa

a3sin(α-+-β)- 4 cosα cosβ

Oblicz objętość i pole powierzchni graniastosłupa prostego, którego podstawą jest romb o przekątnych długości 6 cm i 8 cm, którego przekątna ściany bocznej tworzy z krawędzią podstawy kąt o mierze 45∘ .

Podstawą graniastosłupa prostego ABCDEF jest trójkąt ABC , w którym |∡ABC | = 120∘ oraz |AB | = 2 (zobacz rysunek). Trójkąt BF D jest równoboczny. Oblicz pole powierzchni całkowitej tego graniastosłupa.


PIC


Na rysunku przedstawiono fragment siatki graniastosłupa prawidłowego trójkątnego.


PIC


Pole narysowanego trójkąta jest równe  √ -- 16 3 cm 2 , a pole prostokąta jest równe  √ -- 24 3 cm 2 . Oblicz objętość tego graniastosłupa.

Podstawą graniastosłupa prostego ABCDEF GH jest romb o boku długości 5, polu 24 i kącie ostrym ∡BAD . Graniastosłup ten przecięto płaszczyzną AKLM w ten sposób, że otrzymany przekrój jest rombem o kącie ostrym |∡KAM | = 45 ∘ (zobacz rysunek). Oblicz pole tego przekroju.


PIC


Pole powierzchni całkowitej graniastosłupa prawidłowego sześciokątnego o krawędzi podstawy a wyraża się wzorem  √ -- √ -- (3 3 − 6)a2 + 12 3a . Wyznacz sumę długości krawędzi podstawy i wysokości tego graniastosłupa.

Graniastosłup prawidłowy czworokątny przecięto płaszczyzną, która zawiera krawędź podstawy oraz przechodzi przez środek przeciwległej krawędzi bocznej (zobacz rysunek).


ZINFO-FIGURE


Oblicz jaki jest stosunek objętości dwóch brył na jakie został podzielony ten graniastosłup.

W graniastosłupie prawidłowym trójkątnym poprowadzono płaszczyznę r wyznaczoną przez wysokość dolnej podstawy i ten z wierzchołków górnej podstawy, że płaszczyzna r z płaszczyzną podstawy graniastosłupa tworzy kąt o mierze α ⁄= 90∘ . Pole przekroju graniastosłupa wyznaczonego przez płaszczyznę r jest równe S . Oblicz objętość graniastosłupa.

Trójkąt o bokach 3, 5, 7 jest podstawą graniastosłupa prostego, w który wpisano kulę. Oblicz objętość tego graniastosłupa.

Podstawą ostrosłupa trójkątnego ABCS jest trójkąt prostokątny ABC , w którym |AB | = 10 . Stosunek długości przyprostokątnej AC tego trójkąta do długości przyprostokątnej BC jest równy 4:3. Wszystkie krawędzie boczne ostrosłupa mają długość 13. Oblicz objętość tego ostrosłupa.


PIC


Objętość graniastosłupa prawidłowego trójkątnego jest równa 8, a przekątne dwóch ścian bocznych poprowadzone z jednego wierzchołka tworzą kąt α . Oblicz długość krawędzi podstawy tego graniastosłupa.

Kacper i Hela otrzymali identyczne zestawy 138 drewnianych klocków, w których każdy klocek jest sześcianem o krawędzi 2 cm. Kacper ze swoich klocków zbudował graniastosłup prawidłowy czworokątny i zostały mu dwa klocki, których nie było gdzie dołożyć. Hela ze swoich klocków zbudowała trzy identyczne graniastosłupy prawidłowe czworokątne i zostały jej trzy klocki, których nie było gdzie dołożyć. Oblicz stosunek pola powierzchni całkowitej graniastosłupa zbudowanego przez Kacpra do pola powierzchni całkowitej jednego z graniastosłupów zbudowanych przez Helę. Wynik podaj w postaci ułamka nieskracalnego.

Każda krawędź graniastosłupa prawidłowego trójkątnego ABCDEF ma długość 4 (zobacz rysunek).


PIC


Oblicz odległość wierzchołka F tego graniastosłupa od płaszczyzny DEC .

W graniastosłupie prawidłowym sześciokątnym poprowadzono płaszczyznę, która przechodzi przez dłuższą przekątną dolnej podstawy oraz przez jedną z krawędzi górnej podstawy. Płaszczyzna ta wyznacza przekrój graniastosłupa, który jest trapezem równoramiennym. Wiedząc, że w trapez ten można wpisać okrąg o promieniu 1, oblicz objętość graniastosłupa.

Podstawą graniastosłupa prostego jest trójkąt prostokątny o przyprostokątnych mających długości 1 i √ -- 3 . Podaj miary kątów między sąsiednimi ścianami bocznymi tego graniastosłupa.

Dany jest graniastosłup prosty ABCDEF , którego podstawą jest trójkąt ABC o kątach |∡CAB | = α i |∡CBA | = β . Przekątne CE i CD ścian bocznych tworzą kąt o mierze δ takiej, że tgδ = 490 (zobacz rysunek).


PIC


Pole trójkąta CED jest równe 4, a pole trójkąta CBA jest równe 12 tg(α + β ) . Oblicz wysokość h tego graniastosłupa.

Liczba wszystkich przekątnych podstaw i ścian bocznych pewnego graniastosłupa jest równa 110. Oblicz, ile krawędzi ma podstawa tego graniastosłupa.

Podstawą graniastosłupa prostego ABCDEF jest trójkąt równoramienny ABC , w którym |AC | = |BC | , |AB | = 8 . Wysokość trójkąta ABC , poprowadzona z wierzchołka C , ma długość 3. Przekątna CE ściany bocznej tworzy z krawędzią CB podstawy ABC kąt 60∘ (zobacz rysunek).


PIC


Oblicz pole powierzchni całkowitej oraz objętość tego graniastosłupa.

Podstawą graniastosłupa prostego jest trójkąt prostokątny równoramienny. Kąt między przekątnymi, wychodzącymi z tego samego wierzchołka, dwóch prostopadłych ścian bocznych, ma miarę 60 ∘ . Wiedząc, że objętość tego graniastosłupa jest równa 32 cm 3 , oblicz pole powierzchni całkowitej tej bryły.

Oblicz objętość graniastosłupa prostego, którego podstawą jest romb o przekątnych długości 16 cm i 30 cm, a krawędź boczna jest dwa razy dłuższa od krawędzi podstawy.

Strona 1 z 6
spinner