Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Graniastosłup

Wyszukiwanie zadań

Dany jest graniastosłup prawidłowy trójkątny ABCDEF . Krawędź podstawy tego graniastosłupa ma długość 4, a wysokość graniastosłupa jest równa 6 (zobacz rysunek).


PIC


Oblicz sinus kąta AF B .

Dany jest graniastosłup prawidłowy trójkątny ABCDEF o podstawach ABC i DEF i krawędziach bocznych AD ,BE i CF (zobacz rysunek). Punkt P jest środkiem krawędzi CF . Długość krawędzi podstawy AB jest równa 12, a pole trójkąta ABP jest równe 12√ 31- . Oblicz objętość tego graniastosłupa.


PIC


Ukryj Podobne zadania

Krawędź podstawy graniastosłupa prawidłowego trójkątnego ABCDEF jest równa 6 (zobacz rysunek). Punkt P dzieli krawędź boczną CF w stosunku |CP | : |P F| = 2 : 3 . Pole trójkąta ABP jest równe  √ -- 15 3 . Oblicz objętość tego graniastosłupa.


PIC


Podstawą prostopadłościanu jest kwadrat o boku długości 4, a wysokość prostopadłościanu jest równa 8. Połączono odcinkami środki trzech krawędzi prostopadłościanu, z których żadne dwie nie leżą w jednej płaszczyźnie, i otrzymano trójkąt PQR

  • Oblicz długości boków trójkąta P QR .
  • Wyznacz miary kątów trójkąta P QR .

Z czterech ołowianych sześcianów o przekątnej długości  √ -- 4 3 wykonano graniastosłup prawidłowy czworokątny o krawędzi podstawy długości 8. Oblicz długość przekątnej otrzymanego graniastosłupa.

Dany jest graniastosłup prosty o podstawie pięciokątnej ABCDE (zobacz rysunek). Każda ze ścian bocznych tego graniastosłupa jest kwadratem o polu dwa razy mniejszym niż pole pięciokąta ABCDE . Pole powierzchni całkowitej tego graniastosłupa jest równe 153. Oblicz jego objętość.


PIC


Ukryj Podobne zadania

Dany jest graniastosłup prosty o podstawie sześciokątnej ABCDEF (zobacz rysunek). Każda ze ścian bocznych tego graniastosłupa jest kwadratem o polu o 25% mniejszym niż pole sześciokąta ABCDEF . Pole powierzchni całkowitej tego graniastosłupa jest równe 156. Oblicz jego objętość.


PIC


W graniastosłupie prawidłowym czworokątnym powierzchnia boczna po rozwinięciu jest kwadratem o polu S = 400 cm 2 . Oblicz objętość i pole powierzchni całkowitej tej bryły .

Ukryj Podobne zadania

W graniastosłupie prawidłowym trójkątnym powierzchnia boczna po rozwinięciu jest kwadratem o polu 324 cm 2 . Oblicz objętość tej bryły .

Podstawą graniastosłupa prostego jest trójkąt równoramienny o ramionach długości a . Pole podstawy jest równe sumie pól dwóch przystających ścian bocznych graniastosłupa. Uzasadnij, że wysokość graniastosłupa jest nie większa niż 1a 4 .

Dany jest graniastosłup prawidłowy trójkątny ABCDEF o podstawach ABC i DEF , w którym wszystkie krawędzie mają tę samą długość. Wykaż, że jeżeli przekrój tego graniastosłupa płaszczyzną zawierającą krawędź podstawy AB jest trapezem, to płaszczyzna ta jest nachylona do płaszczyzny podstawy ABC tego graniastosłupa pod takim kątem α , że  √- tg α > 233- .

Graniastosłup prawidłowy trójkątny przecięto płaszczyzną, przechodzącą przez środek ciężkości górnej podstawy i krawędź dolnej podstawy, pod kątem α do dolnej podstawy. Pole otrzymanego przekroju wynosi P . Oblicz pole powierzchni całkowitej tego graniastosłupa.

Dany jest graniastosłup prosty ABCDEF GH , którego podstawą jest prostokąt ABCD . W tym graniastosłupie |BD | = 15 , a ponadto |CD | = 3 + |BC | oraz |∡CDG | = 60∘ (zobacz rysunek).


PIC


Oblicz objętość i pole powierzchni bocznej tego graniastosłupa.

Bryła przedstawiona na poniższym rysunku powstała przez wycięcie z graniastosłupa prostego trójkątnego innego graniastosłupa prostego. Oblicz pole powierzchni tej bryły.


PIC


Podstawą graniastosłupa jest trapez równoramienny o podstawach długości 56 cm i 40 cm oraz wysokości 15 cm. Wiedząc, że wysokość graniastosłupa jest równa 10 cm, oblicz jego pole powierzchni całkowitej.

Ukryj Podobne zadania

Podstawą graniastosłupa jest trapez równoramienny o podstawach długości 56 cm i 40 cm oraz wysokości 15 cm. Wiedząc, że wysokość graniastosłupa jest równa 20 cm, oblicz jego pole powierzchni całkowitej.

Podstawą graniastosłupa prawidłowego jest trójkąt, w którym wysokość ma długość  √ -- 6 3 . Przekątne ścian bocznych wychodzące z jednego wierzchołka tworzą kąt α taki, że cosα = 7 9 . Oblicz objętość graniastosłupa.

Ukryj Podobne zadania

Podstawą graniastosłupa prawidłowego jest trójkąt, w którym wysokość ma długość  √ -- 2 3 . Przekątne ścian bocznych wychodzące z jednego wierzchołka tworzą kąt α taki, że cosα = 11 13 . Oblicz objętość graniastosłupa.

Podstawą graniastosłupa prostego  ′ ′ ′ ′ ABCDA B C D jest romb ABCD . Przekątna AC ′ tego graniastosłupa ma długość 8 i jest nachylona do płaszczyzny podstawy pod kątem 30 ∘ , a przekątna BD ′ jest nachylona do tej płaszczyzny pod kątem 45∘ . Oblicz pole powierzchni całkowitej tego graniastosłupa.


PIC


Ukryj Podobne zadania

Podstawą graniastosłupa prostego  ′ ′ ′ ′ ABCDA B C D jest romb ABCD . Przekątna A ′C tego graniastosłupa ma długość 6 i jest nachylona do płaszczyzny podstawy pod kątem 3 0∘ , a objętość graniastosłupa jest równa 27√-3- 2 . Oblicz pole powierzchni całkowitej tego graniastosłupa.


PIC


Podstawą graniastosłupa prostego  ′ ′ ′ ′ ABCDA B C D jest romb ABCD . Przekątna AC ′ tego graniastosłupa ma długość 6 i jest nachylona do płaszczyzny podstawy pod kątem 30 ∘ , a przekątna BD ′ ma długość  √ -- 3 2 . Oblicz pole powierzchni całkowitej tego graniastosłupa.


PIC


Oblicz objętość graniastosłupa prawidłowego trójkątnego, w którym krawędź podstawy ma długość 1, a przekątna ściany bocznej tworzy z sąsiednią ścianą kąt o mierze 30 ∘ .

Ukryj Podobne zadania

W graniastosłupie prawidłowym trójkątnym krawędź podstawy ma długość 4, a przekątna AE , ściany ABEF jest nachylona do ściany ABCD pod kątem ostrym α takim, że  √ - sin α = --3 4 .


PIC


  • Zaznacz na rysunku kąt α .
  • Oblicz objętość graniastosłupa.

Pole powierzchni bocznej graniastosłupa prawidłowego czworokątnego jest 6 razy większe, od jego pola podstawy, a objętość tego graniastosłupa jest równa 12. Oblicz długość krawędzi podstawy oraz długość przekątnej tego graniastosłupa. Zapisz obliczenia.

Każda krawędź graniastosłupa trójkątnego ma długość 26. Ściana boczna ACF D jest prostopadła do płaszczyzny podstawy ABC , a krawędź AD jest nachylona do płaszczyzny podstawy pod katem α takim, że tgα = 2,4 (zobacz rysunek).


PIC


Oblicz cosinus kąta DBF .

Dany jest graniastosłup prawidłowy trójkątny ABCDEF o podstawach ABC i DEF i krawędziach bocznych AD , BE i CF . Oblicz pole trójkąta ABF wiedząc, że |AB | = 10 i |CF | = 11 . Narysuj ten graniastosłup i zaznacz na nim trójkąt ABF .

Ukryj Podobne zadania

Dany jest graniastosłup prawidłowy trójkątny ABCDEF o podstawach ABC i DEF i krawędziach bocznych AD , BE i CF . Oblicz pole trójkąta ABF wiedząc, że |AB | = 6 i |CF | = 13 . Narysuj ten graniastosłup i zaznacz na nim trójkąt ABF .

Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 6. Oblicz cosinus kąta nachylenia dłuższej przekątnej tego graniastosłupa do płaszczyzny podstawy graniastosłupa.

Podstawą graniastosłupa prostego  ′ ′ ′ ′ ABCDA B C D jest równoległobok ABCD o bokach długości |AB | = 5 i |BC | = 4 . Oblicz długość wysokości A ′A graniastosłupa jeżeli |∡A ′BC | = 1 05∘ oraz |∡A ′CB | = 45∘ .

Strona 2 z 6
spinner