Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Ostrosłup/Prawidłowy trójkątny

Wyszukiwanie zadań

Oblicz cosinus kąta między ścianą boczną i płaszczyzną podstawy ostrosłupa prawidłowego trójkątnego, jeżeli wiadomo, że promień okręgu opisanego na podstawie, wysokość ostrosłupa i krawędź boczna tworzą trójkąt równoramienny.

Ukryj Podobne zadania

Oblicz cosinus kąta między krawędzią boczną i krawędzią podstawy ostrosłupa prawidłowego trójkątnego, jeżeli wiadomo, że promień okręgu opisanego na podstawie, wysokość ostrosłupa i krawędź boczna tworzą trójkąt równoramienny.

W ostrosłupie prawidłowym trójkątnym krawędź boczna ma długość  √ -- 3 6 , a krawędź podstawy ma długość 12. Oblicz miarę kąta utworzonego przez dwie sąsiednie ściany boczne.

W ostrosłupie prawidłowym trójkątnym krawędzie boczne są dwa razy dłuższe od krawędzi podstawy.

  1. Wyznacz sinus kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy.
  2. Wyznacz długość krawędzi podstawy, tak aby objętość ostrosłupa wynosiła  √ --- 23 11 .

Długość krawędzi bocznej ostrosłupa prawidłowego trójkątnego ABCS jest równa  √ -- 5 3 (zobacz rysunek). Krawędź boczna tworzy z wysokością tego ostrosłupa kąt α taki, że tg α = 1 2 . Oblicz objętość tego ostrosłupa.


ZINFO-FIGURE


W ostrosłupie prawidłowym trójkątnym ABCS krawędź podstawy ma długość 12, a jego objętość jest równa  √ -- 72 3 . Kąt α jest kątem między krawędziami bocznymi SA i SB (zobacz rysunek). Oblicz sinus kąta α .


PIC


Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt ABC . Punkty E i F są rzutami punktów A i S na przeciwległe ściany. Oblicz w jakim stosunku odcinek AE dzieli odcinek SF , jeżeli ściana boczna ostrosłupa jest nachylona do podstawy pod kątem, którego sinus jest równy a .

Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt ABC . Kąt nachylenia krawędzi bocznej AS do płaszczyzny podstawy ostrosłupa jest równy kątowi między krawędziami bocznymi AS i BS zawartymi w ścianie bocznej ASB tego ostrosłupa (zob. rysunek). Oblicz kosinus tego kąta.


PIC


Objętość ostrosłupa prawidłowego trójkątnego ABCS jest równa  √ -- 6 3 , a krawędź boczna tworzy z płaszczyzną podstawy kąt 3 0∘ . Oblicz pole powierzchni bocznej tego ostrosłupa.

Pole powierzchni bocznej ostrosłupa prawidłowego trójkątnego równa się  √ -- a2--15 4 , gdzie a oznacza długość krawędzi podstawy tego ostrosłupa. Zaznacz na poniższym rysunku kąt nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy. Miarę tego kąta oznacz symbolem β . Oblicz cosβ i korzystając z tablic funkcji trygonometrycznych i odczytaj przybliżoną wartość β z dokładnością do 1 ∘ .


PIC


W ostrosłupie prawidłowym trójkątnym długość krawędzi podstawy jest równa a i jest 4 razy większa niż odległość środka podstawy od ściany bocznej. Oblicz objętość tego ostrosłupa.

W ostrosłup prawidłowy trójkątny wpisano kulę o promieniu r . Ściana boczna ostrosłupa nachylona jest do płaszczyzny podstawy pod kątem 2α . Oblicz objętość tego ostrosłupa.

Suma długości wszystkich krawędzi ostrosłupa prawidłowego trójkątnego jest równa 96, a krawędź boczna tworzy z płaszczyzną podstawy kąt, którego cosinus jest równy √ - --3 9 . Oblicz pole powierzchni bocznej tego ostrosłupa.

W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej prostopadła do krawędzi podstawy ostrosłupa jest równa  √ - 5--3 4 , a pole powierzchni bocznej tego ostrosłupa jest równe 15√-3 4 . Oblicz objętość tego ostrosłupa.

Pole podstawy ostrosłupa prawidłowego trójkątnego jest równe  √ -- 2 9 3 cm , a jego pole powierzchni bocznej jest równe  √ -- 18 3 cm 2 . Oblicz objętość tego ostrosłupa.

W ostrosłupie prawidłowym trójkątnym kąt płaski przy wierzchołku ostrosłupa ma miarę α , zaś odległość wierzchołka podstawy od krawędzi bocznej, do której nie należy, jest równa d . Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.

Ostrosłup prawidłowy trójkątny przecięto płaszczyzną przechodzącą przez krawędź podstawy długości a i środek wysokości ostrosłupa. Płaszczyzna ta jest nachylona do płaszczyzny podstawy pod kątem α . Oblicz objętość i pole powierzchni bocznej ostrosłupa.

Krawędź boczna ostrosłupa prawidłowego trójkątnego jest nachylona do płaszczyzny podstawy pod kątem 6 0∘ . Odległość spodka wysokości ostrosłupa od krawędzi bocznej jest równa 4. Oblicz objętość tego ostrosłupa.

W ostrosłupie prawidłowym trójkątnym krawędź boczna ma długość 6, a pole ściany bocznej jest równe  √ -- 9 3 . Oblicz objętość tego ostrosłupa.

Dane są dwie bryły: stożek, w którym długość promienia podstawy jest równa 2 dm i wysokość ma długość 2π- dm oraz ostrosłup prawidłowy trójkątny, w którym krawędź podstawy ma długość 4 dm. Wiedząc, że objętości tych brył są równe, wyznacz kąt nachylenia ściany bocznej ostrosłupa do jego podstawy.

W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej ma długość  √ -- 4 3 , a ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 60 ∘ . Oblicz objętość ostrosłupa.

Ukryj Podobne zadania

Trójkąt równoboczny ABC jest podstawą ostrosłupa prawidłowego ABCS , w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 60 ∘ , a krawędź boczna ma długość  √ -- 2 7 (zobacz rysunek). Oblicz objętość tego ostrosłupa.


PIC


Trójkąt równoboczny ABC jest podstawą ostrosłupa prawidłowego ABCS , w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 60 ∘ , a krawędź boczna ma długość 7 (zobacz rysunek). Oblicz objętość tego ostrosłupa.


PIC


Strona 3 z 3
spinner