Oblicz cosinus kąta między ścianą boczną i płaszczyzną podstawy ostrosłupa prawidłowego trójkątnego, jeżeli wiadomo, że promień okręgu opisanego na podstawie, wysokość ostrosłupa i krawędź boczna tworzą trójkąt równoramienny.
/Szkoła średnia/Geometria/Stereometria/Ostrosłup/Prawidłowy trójkątny
Oblicz cosinus kąta między krawędzią boczną i krawędzią podstawy ostrosłupa prawidłowego trójkątnego, jeżeli wiadomo, że promień okręgu opisanego na podstawie, wysokość ostrosłupa i krawędź boczna tworzą trójkąt równoramienny.
W ostrosłupie prawidłowym trójkątnym krawędź boczna ma długość , a krawędź podstawy ma długość 12. Oblicz miarę kąta utworzonego przez dwie sąsiednie ściany boczne.
W ostrosłupie prawidłowym trójkątnym krawędzie boczne są dwa razy dłuższe od krawędzi podstawy.
- Wyznacz sinus kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy.
- Wyznacz długość krawędzi podstawy, tak aby objętość ostrosłupa wynosiła .
Długość krawędzi bocznej ostrosłupa prawidłowego trójkątnego jest równa (zobacz rysunek). Krawędź boczna tworzy z wysokością tego ostrosłupa kąt taki, że . Oblicz objętość tego ostrosłupa.
W ostrosłupie prawidłowym trójkątnym krawędź podstawy ma długość 12, a jego objętość jest równa . Kąt jest kątem między krawędziami bocznymi i (zobacz rysunek). Oblicz sinus kąta .
Podstawą ostrosłupa prawidłowego trójkątnego jest trójkąt . Punkty i są rzutami punktów i na przeciwległe ściany. Oblicz w jakim stosunku odcinek dzieli odcinek , jeżeli ściana boczna ostrosłupa jest nachylona do podstawy pod kątem, którego sinus jest równy .
Podstawą ostrosłupa prawidłowego trójkątnego jest trójkąt . Kąt nachylenia krawędzi bocznej do płaszczyzny podstawy ostrosłupa jest równy kątowi między krawędziami bocznymi i zawartymi w ścianie bocznej tego ostrosłupa (zob. rysunek). Oblicz kosinus tego kąta.
Objętość ostrosłupa prawidłowego trójkątnego jest równa , a krawędź boczna tworzy z płaszczyzną podstawy kąt . Oblicz pole powierzchni bocznej tego ostrosłupa.
Pole powierzchni bocznej ostrosłupa prawidłowego trójkątnego równa się , gdzie oznacza długość krawędzi podstawy tego ostrosłupa. Zaznacz na poniższym rysunku kąt nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy. Miarę tego kąta oznacz symbolem . Oblicz i korzystając z tablic funkcji trygonometrycznych i odczytaj przybliżoną wartość z dokładnością do .
W ostrosłupie prawidłowym trójkątnym długość krawędzi podstawy jest równa i jest 4 razy większa niż odległość środka podstawy od ściany bocznej. Oblicz objętość tego ostrosłupa.
W ostrosłup prawidłowy trójkątny wpisano kulę o promieniu . Ściana boczna ostrosłupa nachylona jest do płaszczyzny podstawy pod kątem . Oblicz objętość tego ostrosłupa.
Suma długości wszystkich krawędzi ostrosłupa prawidłowego trójkątnego jest równa 96, a krawędź boczna tworzy z płaszczyzną podstawy kąt, którego cosinus jest równy . Oblicz pole powierzchni bocznej tego ostrosłupa.
W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej prostopadła do krawędzi podstawy ostrosłupa jest równa , a pole powierzchni bocznej tego ostrosłupa jest równe . Oblicz objętość tego ostrosłupa.
Pole podstawy ostrosłupa prawidłowego trójkątnego jest równe , a jego pole powierzchni bocznej jest równe . Oblicz objętość tego ostrosłupa.
W ostrosłupie prawidłowym trójkątnym kąt płaski przy wierzchołku ostrosłupa ma miarę , zaś odległość wierzchołka podstawy od krawędzi bocznej, do której nie należy, jest równa . Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.
Ostrosłup prawidłowy trójkątny przecięto płaszczyzną przechodzącą przez krawędź podstawy długości i środek wysokości ostrosłupa. Płaszczyzna ta jest nachylona do płaszczyzny podstawy pod kątem . Oblicz objętość i pole powierzchni bocznej ostrosłupa.
Krawędź boczna ostrosłupa prawidłowego trójkątnego jest nachylona do płaszczyzny podstawy pod kątem . Odległość spodka wysokości ostrosłupa od krawędzi bocznej jest równa 4. Oblicz objętość tego ostrosłupa.
W ostrosłupie prawidłowym trójkątnym krawędź boczna ma długość 6, a pole ściany bocznej jest równe . Oblicz objętość tego ostrosłupa.
Dane są dwie bryły: stożek, w którym długość promienia podstawy jest równa 2 dm i wysokość ma długość dm oraz ostrosłup prawidłowy trójkątny, w którym krawędź podstawy ma długość 4 dm. Wiedząc, że objętości tych brył są równe, wyznacz kąt nachylenia ściany bocznej ostrosłupa do jego podstawy.
W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej ma długość , a ściana boczna jest nachylona do płaszczyzny podstawy pod kątem . Oblicz objętość ostrosłupa.
Trójkąt równoboczny jest podstawą ostrosłupa prawidłowego , w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem , a krawędź boczna ma długość (zobacz rysunek). Oblicz objętość tego ostrosłupa.
Trójkąt równoboczny jest podstawą ostrosłupa prawidłowego , w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem , a krawędź boczna ma długość 7 (zobacz rysunek). Oblicz objętość tego ostrosłupa.