Zadania.info Największy internetowy zbiór zadań z matematyki

/Konkursy/Zadania/Geometria/Planimetria/Trapez/Różne

Wyszukiwanie zadań

Czworokąt ABCD jest trapezem prostokątnym, w którym AB ∥ CD . Wykaż że

|AC |2 + |BD |2 = |AD |2 + |BC |2 + 2|AB |⋅|DC |.

W trapez ABCD , gdzie AB ∥ CD i |AB | > |CD | , wpisano okrąg (patrz rysunek).


PIC


Dwusieczna kąta ostrego przy wierzchołku A jest prostopadła do ramienia |BC | .

  • Wykaż, że dwusieczna kąta przy wierzchołku D jest równoległa do ramienia BC .
  • Oblicz |BC | : |DC | .

Czworokąt ABCD jest trapezem o podstawach AB i CD . Wykaż że

|AC |2 + |BD |2 = |AD |2 + |BC |2 + 2|AB |⋅|DC |.

Jedna z podstaw trapezu wpisanego w okrąg jest średnicą okręgu. Oblicz cosinus kąta ostrego trapezu wiedząc, że stosunek obwodu trapezu do sumy długości jego podstaw wynosi 3:2.

Na okręgu o promieniu r opisano trapez, w którym |AB | = a i |CD | = b .


ZINFO-FIGURE


Wykaż, że 4r2 ≤ ab .

Ramiona trapezu są średnicami dwóch okręgów. Wykaż, że jeśli okręgi te są styczne zewnętrznie, to w trapez ten można wpisać okrąg.

Punkt E leży na ramieniu BC trapezu ABCD , w którym AB ∥ CD . Udowodnij, że ∡AED = ∡BAE + ∡CDE .

Wykaż, że punkt przecięcia przekątnych trapezu leży na prostej przechodzącej przez środki jego podstaw.

spinner