Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria/Planimetria/Trójkąt/Równoramienny

Wyszukiwanie zadań

Punkt S jest środkiem okręgu wpisanego w trójkąt równoramienny ABC , w którym |AC | = |BC | = 7 i |AB | = 12 .


PIC


Wówczas miara φ kąta ASB spełnia warunek
A) 145 ∘ < φ < 1 50∘ B) 140∘ < φ < 14 5∘ C) 135∘ < φ < 1 40∘ D)  ∘ ∘ 13 0 < φ < 135

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 16 oraz |AB | = 12 . Odcinek EF jest równoległy do podstawy AB oraz |EF | = 10 . Długość odcinka AE jest równa


PIC


A) 403 B) 83 C) 172 D) 30 4

Ukryj Podobne zadania

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 16 oraz |AB | = 12 . Odcinek EF jest równoległy do podstawy AB oraz |EF | = 8 . Długość odcinka AE jest równa


PIC


A) 323 B) 83 C) 163 D) 30 4

Dany jest równoramienny trójkąt ABC o kącie przy podstawie AB równym 40 ∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Przez punkty A i O poprowadzono prostą, która przecięła bok BC w punkcie D . Jeśli miara kąta ADC jest równa α , to
A)  ∘ α = 20 B)  ∘ α = 30 C)  ∘ α = 4 0 D)  ∘ α = 60

Ukryj Podobne zadania

Dany jest równoramienny trójkąt ABC o kącie przy podstawie AB równym 50 ∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Przez punkty A i O poprowadzono prostą, która przecięła bok BC w punkcie D . Jeśli miara kąta ADC jest równa α , to
A)  ∘ α = 60 B)  ∘ α = 70 C)  ∘ α = 7 5 D)  ∘ α = 80

Dany jest równoramienny trójkąt ABC o kącie przy podstawie AB równym 30 ∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Przez punkty A i O poprowadzono prostą, która przecięła bok BC w punkcie D . Jeśli miara kąta ADC jest równa α , to
A)  ∘ α = 45 B)  ∘ α = 30 C)  ∘ α = 5 0 D)  ∘ α = 60

Odcinek AD jest dwusieczną w trójkącie równoramiennym ABC poprowadzoną do ramienia BC .


PIC


Jeżeli |∡ADB | = 75∘ to miara kąta przy wierzchołku C jest równa
A) 30∘ B) 4 0∘ C) 45∘ D)  ∘ 50

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 7 oraz |AB | = 12 . Wysokość opuszczona z wierzchołka C jest równa
A) √ --- 13 B) √ -- 5 C) 1 D) 5

Ukryj Podobne zadania

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 8 oraz |AB | = 12 . Wysokość opuszczona z wierzchołka C jest równa
A) √ --- 26 B)  √ -- 2 7 C) 2 D) 4√ 7-

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 8 oraz |AB | = 14 . Wysokość opuszczona z wierzchołka C jest równa
A) √ --- 13 B) √ -- 5 C) √ 15- D) √ 113-

Podstawa trójkąta równoramiennego ma długość 10, a ramię ma długość 7. Wysokość opuszczona na podstawę ma długość
A)  √ --- 3 17 B)  √ -- 4 6 C) 2√ 6- D) √ 51-

Podstawa trójkąta równoramiennego ma długość 10, a ramię ma długość 13. Wysokość opuszczona na podstawę ma długość
A) √ ---- 194 B) √ --- 69 C) 12 D) 11

Podstawa trójkąta równoramiennego ma długość 6, a ramię ma długość 5. Wysokość opuszczona na podstawę ma długość
A) 3 B) 4 C) √ --- 34 D) √ 61-

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 8 oraz |AB | = 10 . Wysokość opuszczona z wierzchołka C jest równa
A) √ --- 13 B) √ --- 39 C) 6 D) √ 89-

W trójkącie równoramiennym miara kąta przy podstawie jest równa 30 ∘ , a ramię ma długość 8 cm. Podstawa tego trójkąta ma długość
A)  √ -- 4 3 cm B) 4 cm C)  √ -- 8 3 cm D)  √ -- 4 2 cm

Ukryj Podobne zadania

Ramię trójkąta równoramiennego ma długość 12 i tworzy z podstawą kąt o mierze 30∘ . Obwód tego trójkąta jest równy:
A)  √ -- 6 3 + 24 B) 30 C) 36 D) 12√ 3-+ 24

Dany jest trójkąt równoramienny ABC , w którym |AC | = |BC | . Na podstawie AB tego trójkąta leży punkt D , taki że |AD | = |CD | , |BC | = |BD | (zobacz rysunek).


PIC


Wynika stąd, że kąt BCD ma miarę
A) 36∘ B) 6 6∘ C) 72∘ D) 68∘

W trójkącie równoramiennym ramię ma długość 5, a kąt ostry przy podstawie jest równy α . Wysokość poprowadzona na podstawę trójkąta wynosi
A) 5 cosα B) 5tgα C) 5 sin α D) 5ctg α

Kąt między ramionami trójkąta równoramiennego ma miarę  ∘ 40 . Wysokość tego trójkąta poprowadzona do ramienia tworzy z podstawą kąt o mierze
A) 50∘ B) 7 0∘ C) 20∘ D)  ∘ 40

Ukryj Podobne zadania

Dany jest trójkąt ABC , w którym  ∘ |AC | = |BC |,|∡ACB | = 80 , zaś AD jest wysokością trójkąta. Wówczas miara kąta DAB wynosi
A) 60∘ B) 5 0∘ C) 40∘ D) 10∘

Kąt między ramionami trójkąta równoramiennego ma miarę  ∘ 30 . Wysokość tego trójkąta poprowadzona do ramienia tworzy z podstawą kąt o mierze
A) 25∘ B) 1 5∘ C) 75∘ D)  ∘ 30

Kąt między ramionami trójkąta równoramiennego wynosi  ∘ 50 . Miara kąta nachylenia wysokości opuszczonej na ramię tego trójkąta do jego podstawy jest równa
A) 65∘ B) 5 5∘ C) 25∘ D)  ∘ 35

Kąt między ramionami trójkąta równoramiennego ma miarę  ∘ 20 . Miara kąta nachylenia wysokości opuszczonej na ramię tego trójkąta do jego podstawy jest równa
A) 40∘ B) 3 0∘ C) 20∘ D)  ∘ 10

Kąt między ramionami trójkąta równoramiennego wynosi  ∘ 40 . Miara kąta nachylenia wysokości opuszczonej na ramię tego trójkąta do jego podstawy jest równa
A) 40∘ B) 2 0∘ C) 50∘ D)  ∘ 70

W trójkącie równoramiennym ABC o podstawie BC dane są: |BC | = 15 oraz |∡BAC | = 36∘ . Odcinek BD jest odcinkiem dwusiecznej kąta ABC (zobacz rysunek).


PIC


Wówczas długość odcinka AD jest równa
A) |AD | = 1 5 B) |AD | = 16 C)  √ -- |AD | = 6 5 D)  √ -- |AD | = 8 5

Z odcinków o długościach: 5 ,2a + 1,a− 1 można zbudować trójkąt równoramienny. Wynika stąd, że
A) a = 6 B) a = 4 C) a = 3 D) a = 2

Ukryj Podobne zadania

Z odcinków o długościach: 7 ,a − 1 ,2a + 3 można zbudować trójkąt równoramienny. Wynika stąd, że
A) a = 8 B) a = 3 C) a = 2 D) a = 6

W pewnym trójkącie równoramiennym największy kąt ma miarę  ∘ 1 20 , a najdłuższy bok ma długość 12 (zobacz rysunek).


PIC


Najkrótsza wysokość tego trójkąta ma długość równą
A) 6 B)  √ -- 2 3 C)  √ -- 4 3 D) 6√ 3-

Ukryj Podobne zadania

W pewnym trójkącie równoramiennym największy kąt ma miarę  ∘ 12 0 , a ramię ma długość 6 (zobacz rysunek).


PIC


Najkrótsza wysokość tego trójkąta ma długość równą
A) 4 B)  √ -- 3 3 C)  √ -- 4 3 D) 3

Ile wynosi tangens kąta α zaznaczonego na rysunku poniżej?


PIC


A) 13 B)  √ -- 3 3 C) √ - -23 D) √ -- 6

W trójkącie równoramiennym ABC poprowadzono wysokość AS , która utworzyła z podstawą kąt o mierze 24∘ (zobacz rysunek). Ramię tego trójkąta ma długość 10. Długość wysokości AS jest liczbą z przedziału


PIC


A) ⟨ ⟩ 72, 92 B) ⟨ ⟩ 112 , 132 C) (13 15⟩ -2 ,-2 D) (15 17⟩ -2 ,-2

Dany jest trójkąt równoramienny ABC , w którym |AC | = |BC | . Dwusieczna kąta poprowadzona z wierzchołka A przecina bok BC tego trójkąta w punkcie D . Kąt ADC ma miarę 10 2∘ . Kąt między ramionami tego trójkąta ma miarę
A)  ∘ 78 B)  ∘ 44 C)  ∘ 13 6 D)  ∘ 68

Punkt D jest środkiem podstawy trójkąta równoramiennego ABC , w którym |AC | = |BC | . Odległość punktu D od prostej BC jest równa 12, a długość odcinka CD jest równa 20.


PIC


Podstawa AB trójkąta ABC ma długość
A) 15 B) 30 C) 24 D) 16

Wysokości CE i AD trójkąta równoramiennego ABC przecinają się w punkcie F . Podstawa trójkąta ABC ma długość 13, a jego obwód jest równy 65.


PIC


Stosunek pola trójkąta ABD do pola trójkąta ABC jest równy
A) 18 B) 14 C) 136 D) -2 13

W trójkącie równoramiennym ABC wysokość ma długość 8, a długość podstawy AB stanowi 65 długości ramienia. Podstawa tego trójkąta ma długość
A) 30 B) 6 C) 12 D) 10

Podstawa trójkąta równoramiennego ABC ma długość 19. Na ramionach BC i AC wybrano punkty D i E odpowiednio tak, że |CD | = |CE | = 5 56 oraz |DB | = 10 .


PIC


Odległość między prostymi AB i DE jest równa
A) 5 B) 8 C) 10 D) 12

W trójkącie równoramiennym ABC spełnione są warunki: |AC | = |BC | , |∡CAB | = 50∘ . Odcinek BD jest dwusieczną kąta ABC , a odcinek BE jest wysokością opuszczoną z wierzchołka B na bok AC . Miara kąta EBD jest równa


PIC


A) 10∘ B) 12,5∘ C) 13 ,5 ∘ D) 15∘

Strona 1 z 2
spinner