Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria/Planimetria/Trójkąt/Równoramienny

Wyszukiwanie zadań

Stosunek długości podstawy do ramienia trójkąta równoramiennego jest równy 2:3. Ramię jest nachylone do podstawy pod kątem α , takim, że
A)  √ - sin α = 2-2- 3 B) sin α = 2 3 C) co sα = 23 D)  2√2 cosα = -3--

Ukryj Podobne zadania

Stosunek długości podstawy do ramienia trójkąta równoramiennego jest równy 4:3. Ramię jest nachylone do podstawy pod kątem α , takim, że
A)  √- cosα = -5- 3 B) sinα = 2 3 C) co sα = 32 D)  √5 sin α = 3--

Stosunek długości podstawy do ramienia trójkąta równoramiennego jest równy 6:4. Ramię jest nachylone do podstawy pod kątem α , takim, że
A) sin α = 3 4 B)  √ - sinα = --7 4 C)  3 co sα = 2 D)  √7 cosα = -4-

Dany jest trójkąt równoramienny ABC o kącie między ramionami |∡ACB | = 120∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Prosta CO przecina podstawę AB w punkcie D . Miara kąta DOB jest równa
A)  ∘ 45 B)  ∘ 5 5 C)  ∘ 65 D)  ∘ 75

Ukryj Podobne zadania

Dany jest trójkąt równoramienny ABC o kącie między ramionami |∡ABC | = 140∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Prosta CO przecina podstawę AB w punkcie D . Miara kąta DOB jest równa
A)  ∘ 45 B)  ∘ 8 0 C)  ∘ 70 D)  ∘ 60

Dany jest trójkąt równoramienny ABC o kącie między ramionami |∡ABC | = 160∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Prosta CO przecina podstawę AB w punkcie D . Miara kąta DOB jest równa
A)  ∘ 85 B)  ∘ 5 5 C)  ∘ 65 D)  ∘ 75

Ramię trójkąta równoramiennego ABC ma długość 8 cm i tworzy z podstawą kąt o mierze 75 ∘ . Pole tego trójkąta jest równe
A) 4 cm 2 B) 32 cm 2 C) 8 cm 2 D) 1 6 cm 2

Ukryj Podobne zadania

Dany jest trójkąt równoramienny, w którym ramię o długości 10 tworzy z podstawą kąt 6 7,5∘ . Pole tego trójkąta jest równe
A)  √ -- 25 3 B)  √ -- 50 3 C) 25 √ 2- D) 50 √ 2-

w trójkącie równoramiennym ramię ma długość 16 i tworzy z podstawą trójkąta kąt o mierze 75∘ . Pole tego trójkąta jest równe
A) 128 B) 64 C)  √ -- 128 2 D) 64√ 3-

Dany jest trójkąt równoramienny, w którym ramię o długości 20 tworzy z podstawą kąt 6 7,5∘ . Pole tego trójkąta jest równe
A)  √ -- 100 3 B)  √ -- 100 2 C) 200 √ 3- D) 20 0√ 2-

Dany jest trójkąt ABC , w którym  ∘ |AC | = |BC |,|∡ACB | = 80 , zaś AD jest dwusieczną kąta BAC i D ∈ BC . Wówczas miara kąta ADB jest równa
A) 105 ∘ B) 90∘ C)  ∘ 80 D)  ∘ 75

Ukryj Podobne zadania

Dany jest trójkąt równoramienny ABC . Kąt ACB ma miarę  ∘ 140 , a dwusieczna kąta BAC przecina bok BC w punkcie P . Miara kąta AP B jest równa
A) 144 ∘ B) 120∘ C)  ∘ 13 5 D)  ∘ 15 0

Dany jest trójkąt ABC , w którym  ∘ |AC | = |BC |,|∡ACB | = 88 , zaś AD jest dwusieczną kąta BAC i D ∈ BC . Wówczas miara kąta ADB jest równa
A) 102 ∘ B) 111∘ C)  ∘ 11 2 D)  ∘ 11 8

Dany jest trójkąt równoramienny ABC , w którym |AC | = |BC | . Kąt między ramionami tego trójkąta ma miarę 44 ∘ . Dwusieczna kąta poprowadzona z wierzchołka A przecina bok BC tego trójkąta w punkcie D . Kąt ADC ma miarę
A)  ∘ 78 B)  ∘ 3 4 C)  ∘ 68 D)  ∘ 102

Dany jest trójkąt ABC , w którym  ∘ |AC | = |BC |,|∡ACB | = 76 , zaś AD jest dwusieczną kąta BAC i D ∈ BC . Wówczas miara kąta ADB jest równa
A) 100 ∘ B) 98∘ C)  ∘ 10 4 D)  ∘ 10 2

Dany jest trójkąt równoramienny ABC . Kąt ACB ma miarę  ∘ 120 , a dwusieczna kąta BAC przecina bok BC w punkcie P . Miara kąta AP B jest równa
A) 100 ∘ B) 30∘ C)  ∘ 13 5 D)  ∘ 12 0

Dany jest trójkąt równoramienny, w którym ramię o długości 8 tworzy z podstawą kąt 1 5∘ . Pole tego trójkąta jest równe
A) 16 B)  √ -- 1 6 2 C) 16 √ 3- D) 32

W trójkącie równoramiennym o polu √-3 3 miara kąta przy podstawie jest równa 30 ∘ . Długość podstawy tego trójkąta jest liczbą
A) wymierną mniejszą od 2 B) niewymierną większą o 1
C) całkowitą większą od 1 D) niewymierną mniejszą od 2

Ukryj Podobne zadania

W trójkącie równoramiennym o polu √ -- 3 miara kąta przy podstawie jest równa 30 ∘ . Długość podstawy tego trójkąta jest liczbą
A) wymierną mniejszą od 3 B) niewymierną większą o 3
C) całkowitą większą od 3 D) niewymierną mniejszą od 3

W trójkącie równoramiennym o polu  √ -- 3 3 miara kąta przy podstawie jest równa 30 ∘ . Długość podstawy tego trójkąta jest liczbą
A) całkowitą większą od 4 B) niewymierną większą o 4
C) wymierną mniejszą od 4 D) niewymierną mniejszą od 4

Wysokość CD trójkąta równoramiennego ABC jest równa 8, a ramię AC ma długość 10. Podstawa AB tego trójkąta ma długość
A) 12 B) 6 C) √ --- 89 D) 2√ 41-

Ukryj Podobne zadania

Wysokość CD trójkąta równoramiennego ABC jest równa 10, a ramię AC ma długość 14. Podstawa AB tego trójkąta ma długość
A) √ --- 96 B)  √ --- 4 24 C) 4√ 6- D) 8√ 6-

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 7 oraz wysokość |CD | = 3 . Podstawa AB tego trójkąta ma długość
A)  √ --- 4 10 B)  √ --- 2 10 C) 2√ 5-8 D) 10

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 5 oraz wysokość |CD | = 2 . Podstawa AB tego trójkąta ma długość
A) 6 B)  √ --- 2 2 1 C) 2√ 2-9 D) 14

W trójkącie równoramiennym ABC o podstawie AB dane są: |AB | = 6 oraz |∡BAC | = 15∘ . Pole koła opisanego na tym trójkącie jest równe
A) 144 π B) 12 π C) 48 π D) 36π

W trójkącie równoramiennym o bokach długości:  √ -- 5,5,5 2 kąt przy podstawie ma miarę:
A) 45∘ B) 6 0∘ C) 30∘ D) 90∘

Na podstawie AB i ramieniu AC trójkąta równoramiennego ABC dane są punkty D i E takie, że |AE | = 2|EC | i |AD | = 2|DB | . Punkty F i G leżą na ramieniu BC tak, że odcinki DG i EF są prostopadłe do prostej BC (zobacz rysunek).


PIC


Pole trójkąta ABC jest równe 18. Zatem suma pól trójkątów CF E i BGD jest równa
A) 9 B) 6 C) 3 D) 2

Ukryj Podobne zadania

Punkty D i E są środkami odpowiednio podstawy AB i ramienia AC trójkąta równoramiennego ABC . Punkty F i G leżą na ramieniu BC tak, że odcinki DG i EF są prostopadłe do prostej BC (zobacz rysunek).


PIC


Pole trójkąta BGD jest równe 2, a pole trójkąta CF E jest równe 4. Zatem pole trójkąta ABC jest równe
A) 24 B) 8 C) 12 D) 16

Każde z ramion trójkąta równoramiennego ma długość 20. Kąt zawarty między ramionami tego trójkąta ma miarę 1 50∘ . Pole tego trójkąta jest równe
A) 100 B) 200 C)  √ -- 10 0 3 D)  √ -- 1 00 2

Ukryj Podobne zadania

Każde z ramion trójkąta równoramiennego ma długość 20. Kąt zawarty między ramionami tego trójkąta ma miarę 1 20∘ . Pole tego trójkąta jest równe
A) 100 B) 200 C)  √ -- 10 0 3 D)  √ -- 1 00 2

Pole powierzchni trójkąta równoramiennego o ramionach długości 6 cm i kącie między nimi 120∘ jest równe
A) 36 cm 2 B) 18 cm 2 C)  √ -- 9 3 cm 2 D) 9 cm 2

Ramię trójkąta równoramiennego ABC ma długość 8, a jeden z kątów tego trójkąta ma miarę 135∘ . Pole tego trójkąta jest równe
A)  √ -- 32 2 B)  √ -- 16 3 C) 32 D) 16√ 2-

W trójkącie ABC , w którym |AC | = |BC | , na boku AB wybrano punkt D taki, że |BD | = |CD | oraz |∡ACD | = 2 1∘ (zobacz rysunek).


PIC


Wynika stąd, że kąt BCD ma miarę
A) 57∘ B) 5 3∘ C) 51∘ D) 55∘

Ukryj Podobne zadania

Dany jest trójkąt równoramienny ABC , w którym |AC | = |BC | . Na podstawie AB tego trójkąta leży punkt D , taki że |AD | = |CD | , |BC | = |BD | oraz ∡ADC = 1 08∘ (zobacz rysunek).


PIC


Wynika stąd, że kąt ABC ma miarę
A) 40∘ B) 4 2∘ C) 36∘ D) 38∘

Dany jest trójkąt równoramienny ABC , w którym |AC | = |BC | . Na podstawie AB tego trójkąta leży punkt D , taki że |AD | = |CD | , |BC | = |BD | oraz ∡BCD = 72∘ (zobacz rysunek).


PIC


Wynika stąd, że kąt ACD ma miarę
A) 38∘ B) 3 6∘ C) 42∘ D) 40∘

W trójkącie ABC , w którym |AC | = |BC | , na boku AB wybrano punkt D taki, że |BD | = |CD | oraz |∡ACD | = 2 7∘ (zobacz rysunek).


PIC


Wynika stąd, że kąt BCD ma miarę
A) 57∘ B) 5 3∘ C) 51∘ D) 55∘

Strona 2 z 2
spinner