Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Do czterech naczyń 1, 2, 3 i 4 (patrz rysunek) o tej samej pojemności równej 300 ml wlano po 150 ml wody. W dwóch naczyniach wodę wlano dokładnie do połowy ich wysokości.


PIC


Które to naczynia?
A) 1 i 2 B) 1 i 3 C) 2 i 4 D) 3 i 4

W pierwszym pudełku jest 6 kul zielonych i 9 czerwonych, a w drugim są 4 kule zielone i 6 czarnych. Losujemy po jednej kuli z każdego z pudełek. Czy prawdziwe jest stwierdzenie, że prawdopodobieństwo wylosowania zielonej kuli z pierwszego pudełka jest większe, niż prawdopodobieństwo wylosowania zielonej kuli z drugiego pudełka? Wybierz odpowiedź T albo N i jej uzasadnienie spośród A, B albo C.

TakNie
ponieważ
A) w pierwszym pudełku jest więcej kul zielonych niż w drugim pudełku.
B) w każdym z pudełek kule zielone stanowią taki sam procent pozostałych kul.
C) w pierwszym pudełku jest tyle samo kul zielonych, ile jest kul czarnych w drugim pudełku.

Punkt kratowy to miejsce przecięcia się linii kwadratowej siatki. Pole wielokąta, którego wierzchołki znajdują się w punktach kratowych kwadratowej siatki na płaszczyźnie, można obliczyć ze wzoru Picka:

 1- P = W + 2 B − 1,

gdzie P oznacza pole wielokąta, W – liczbę punktów kratowych leżących wewnątrz wielokąta, a B – liczbę punktów kratowych leżących na brzegu tego wielokąta.


PIC


W wielokącie przedstawionym na rysunku W = 5 oraz B = 7 , zatem P = 7,5 .
Wewnątrz pewnego wielokąta znajduje się 6 razy mniej punktów kratowych, niż na jego brzegu. Pole tego wielokąta może być równe
A) 2018 B) 2019 C) 2020 D) 2021

*Ukryj

Punkt kratowy to miejsce przecięcia się linii kwadratowej siatki. Pole wielokąta, którego wierzchołki znajdują się w punktach kratowych kwadratowej siatki na płaszczyźnie, można obliczyć ze wzoru Picka:

 1- P = W + 2 B − 1,

gdzie P oznacza pole wielokąta, W – liczbę punktów kratowych leżących wewnątrz wielokąta, a B – liczbę punktów kratowych leżących na brzegu tego wielokąta.


PIC


W wielokącie przedstawionym na rysunku W = 5 oraz B = 7 , zatem P = 7,5 .
Liczba punktów kratowych leżących na brzegu wielokąta o polu 35 może być równa
A) 57 B) 74 C) 37 D) 42

Krawędź podstawy ostrosłupa prawidłowego trójkątnego ma długość 4 cm, a wysokość jego ściany bocznej ma długość 5 cm. Pole powierzchni bocznej tego ostrosłupa jest równe
A) 96 cm 2 B) 48 cm 2 C)  2 80 cm D)  2 30 cm

Na rysunku przedstawiono wykres pewnej funkcji.


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Funkcja przyjmuje wartość największą dla argumentu 4.PF
Funkcja przyjmuje wartość 0 dla czterech argumentów. PF
*Ukryj

Na rysunku przedstawiono wykres pewnej funkcji.


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Funkcja przyjmuje wartość największą dla argumentu 4.PF
Funkcja przyjmuje wartość 0 dla czterech argumentów. PF

Na rysunku przedstawiono wykres pewnej funkcji f .


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Różnica między największą i najmniejszą wartością funkcji jest równa 8.PF
Do wykresu funkcji należy punkt (0,2) . PF

W układzie współrzędnych narysowano wykres funkcji i zaznaczono jego punkty przecięcia z osiami układu.


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Funkcja przyjmuje wartość 0 dla dwóch argumentów: − 2 i 1. PF
Dla wszystkich argumentów większych od − 4 i jednocześnie mniejszych od 1 funkcja przyjmuje wartości ujemne. PF

W układzie współrzędnych narysowano wykres funkcji i zaznaczono jego punkty przecięcia z osiami układu.


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Funkcja przyjmuje wartość 0 dla dwóch argumentów: 1 i 6. PF
Dla wszystkich argumentów większych od 1 i jednocześnie mniejszych od 6 funkcja przyjmuje wartości ujemne. PF

Na którym rysunku łuk narysowany linią ciągłą jest 4 razy krótszy od łuku narysowanego linią przerywaną?


PIC


Liczba  22 19 2 − 9 ⋅2 jest równa
A) 219 B) − 219 C) 23 D) − 8⋅2 19

*Ukryj

Liczba  26 23 3 − 24 ⋅3 jest równa
A) − 323 B) 33 C) 323 D) 324

Punkt S = (2 ,8 ) jest środkiem odcinka AB , gdzie A = (x,6) i B = (7,10) dla x równego
A) x = −3 B) x = 3 C) x = − 2 D) x = 2

Rozwiązaniem układu równań { y − x − 1 = 0 x + y − 3 = 0 jest para
A) x = 1 i y = 2 B) x = 1 i y = − 2 C) x = 2 i y = 3 D) x = 3 i y = 2

*Ukryj

Rozwiązaniem układu równań { 2x + 5y = − 1 3x − 5y = 11 jest
A) { x = 2 y = 1 B) { x = 2 y = − 1 C) { x = 1 y = 2 D) { x = 1 y = − 2

Rozwiązaniem układu równań { 2y − x − 3 = 0 x + 2y − 1 = 0 jest para
A) x = − 1 i y = 1 B) x = 1 i y = 1 C) x = 1 i y = − 1 D) x = − 1 i y = − 1

Rozwiązaniem układu równań { 5x + 3y = 3 8x − 6y = 48 jest para liczb
A) x = −3 i y = 4 B) x = − 3 i y = 6 C) x = 3 i y = − 4 D) x = 9 i y = 4

Układ równań { x+ y− 6 = 0 x− y+ 4 = 0 opisuje w układzie współrzędnych na płaszczyźnie punkt
A) (1,5) B) (− 1,5 ) C) (1,− 5) D) (− 1,− 5)

Rozwiązaniem układu równań { 21x − 14y = − 28 6y + 9x = 48 jest para liczb
A) x = −3 i y = 5 B) x = − 3 i y = 6 C) x = 5 i y = 2 D) x = 2 i y = 5

Rozwiązaniem układu równań { x + 3y = 5 2x − y = 3 jest
A) { x = 2 y = 1 B) { x = 2 y = − 1 C) { x = 1 y = 2 D) { x = 1 y = − 2

Liczba √3 ------- 81⋅6 4 jest równa
A) 72 B) 36 C)  √ -- 24 33 D)  √ -- 12 33

*Ukryj

Liczba √3 -------- 108⋅ 16 jest równa
A) 12 B) 48 C)  √ -- 27 34 D)  √ --- 4 354

Układ równań { 6x = 10y + 1 8 15y− 9x + 27 = 0
A) ma dokładnie jedno rozwiązanie. B) ma dwa rozwiązania.
C) ma nieskończenie wiele rozwiązań. D) nie ma rozwiązań.

*Ukryj

Układ równań { 3 y− 8x = − 3 14x − 23y = 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Układ równań { 2x− 3y = 5 −4x + 6y = − 10.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 2x− 3y = − 5 −4x + 6y = − 10.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 1 2 4x − 3y = 2 y− 38x = 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Układ równań { 1 2 4x − 3y = 2 y− 38x = − 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Na rysunku przedstawiono okrąg o środku O , który jest styczny do wszystkich boków trapezu równoramiennego ABCD . Ramiona AD i BC są styczne do tego okręgu odpowiednio w punktach K i L . Kąt wypukły KOL ma miarę 1 50∘ .


PIC


Miara α kąta ostrego tego trapezu jest równa
A) 75∘ B) 8 0∘ C) 85∘ D) 65∘

Dane są liczby:

I. 0,1(47 ) II. 0,1552 III. 0 ,1(5)

Dla których liczb zaokrąglenie do części setnych jest równe 0,15?
A) I, II i III B) Tylko I i II C) Tylko I i III D) Tylko I E) Tylko III

Korzystając z tego, że  3 13 = 2197 i  3 1 5 = 3375 , oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

√3----------- 2 197⋅ 2197 = 19 6 PF
3√ ----- √3----- 2197 ⋅15 = 3 375⋅ 13 PF

W kwadracie ABCD narysowano dwa półokręgi o średnicach AB i BC (patrz rysunek).


PIC


Pole zacieniowanego obszaru jest równe
A)  √ -- 2 2 B) 4 − π C) 1 D) 2

Marta przygotowała dwa żetony takie, że suma liczb zapisanych na obu stronach każdego żetonu jest równa zero. Widok jednej ze stron tych żetonów przedstawiono poniżej.


PIC


Jakie liczby znajdują się na niewidocznych stronach tych żetonów?
A) − 25 i − 8 B) − 25 i 8 C) 25 i − 8 D) 25 i 8

Wyrażenie (2a+ 3b)(3b − 2a) jest równe
A) 4a2 − 12ab + 9b 2 B) 9b2 + 12ab + 4a2 C) 9b2 − 4a2 D) 4a2 − 9b2

*Ukryj

Wyrażenie (3a+ 2b)(2b − 3a) jest równe
A) 9a2 − 12ab + 4b 2 B) 4b2 − 9a2 C) 4b2 + 12ab + 9a 2 D) 9a 2 − 4b 2

Długość każdego boku kwadratu zwiększono o 20%. Wtedy pole tego kwadratu:
A) wzrośnie o 20% B) wzrośnie o 40% C) wzrośnie o 44% D) wzrośnie dwukrotnie

*Ukryj

Długość boku kwadratu k2 jest o 10% większa od długości boku kwadratu k1 . Wówczas pole kwadratu k 2 jest większe od pola kwadratu k1 o
A) 10% B) 110% C) 21% D) 121%

Uczeń przeczytał w ciągu tygodnia książkę liczącą 420 stron.

Dzień Liczba przeczytanych stron Czas czytania
1. 50 1 h 40 min
2. 70 2 h
3. 90 2 h 20 min
4. 30 30 min
5. 70 2 h 10 min
6. 80 2 h 30 min
7. 30 30 min

Na podstawie informacji zawartych w powyższej tabeli wybierz zdanie prawdziwe.
A) Pierwszego dnia uczeń przeczytał ponad 20% całej książki.
B) Uczeń czytał średnio 50 stron dziennie.
C) Piątego dnia uczeń przeczytał 1 6 całej książki.
D) Przeczytanie pierwszej połowy książki zajęło uczniowi mniej czasu niż przeczytanie drugiej połowy.

Dany jest trapez ABCD , w którym przekątna AC jest prostopadła do ramienia BC , |AD | = |DC | oraz |∡ABC | = 50∘ (zobacz rysunek).


PIC


Stąd wynika, że
A) β = 100∘ B) β = 120∘ C) β = 110∘ D) β = 130∘

*Ukryj

Dany jest trapez ABCD , w którym przekątna AC jest prostopadła do ramienia BC , |AD | = |DC | oraz |∡ADC | = 100∘ (zobacz rysunek).


PIC


Stąd wynika, że
A) β = 40∘ B) β = 50∘ C) β = 60∘ D) β = 80∘

Strona 1 z 51>>>>