Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła podstawowa/Zadania testowe

Wyszukiwanie zadań

W czworokącie ABCD przekątne przecinają się w punkcie E oraz |BE | = |CE | . Przekątna BD dzieli czworokąt ABCD na trójkąt równoboczny i trójkąt równoramienny (zobacz rysunek).


ZINFO-FIGURE


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Kąt ABC ma miarę 100∘ .PF
Kąt AEB ma miarę 70 ∘ . PF

Do czterech naczyń 1, 2, 3 i 4 (patrz rysunek) o tej samej pojemności równej 300 ml wlano po 150 ml wody. W dwóch naczyniach wodę wlano dokładnie do połowy ich wysokości.


PIC


Które to naczynia?
A) 1 i 2 B) 1 i 3 C) 2 i 4 D) 3 i 4

W pierwszym pudełku jest 6 kul zielonych i 9 czerwonych, a w drugim są 4 kule zielone i 6 czarnych. Losujemy po jednej kuli z każdego z pudełek. Czy prawdziwe jest stwierdzenie, że prawdopodobieństwo wylosowania zielonej kuli z pierwszego pudełka jest większe, niż prawdopodobieństwo wylosowania zielonej kuli z drugiego pudełka? Wybierz odpowiedź T albo N i jej uzasadnienie spośród A, B albo C.

TakNie
ponieważ
A) w pierwszym pudełku jest więcej kul zielonych niż w drugim pudełku.
B) w każdym z pudełek kule zielone stanowią taki sam procent pozostałych kul.
C) w pierwszym pudełku jest tyle samo kul zielonych, ile jest kul czarnych w drugim pudełku.
Ukryj Podobne zadania

Na festyn przygotowano loterię, w której było 120 losów, w tym 80 wygrywających. Przed rozpoczęciem festynu dołożono jeszcze 20 losów wygrywających i 20 przegrywających. Czy prawdopodobieństwo wyciągnięcia losu wygrywającego w tej loterii zmieniło się po dołożeniu losów? Wybierz odpowiedź T albo N i jej uzasadnienie spośród A, B albo C.

TakNie
ponieważ
A) różnica liczby losów wygrywających i przegrywających po dołożeniu losów jest taka sama jak na początku.
B) dołożono tyle samo losów wygrywających co przegrywających.
C) zmienił się stosunek liczby losów wygrywających do liczby wszystkich losów.

Na festyn przygotowano loterię, w której było 255 losów, w tym 85 wygrywających. Przed rozpoczęciem festynu dołożono jeszcze 30 losów wygrywających i 60 przegrywających. Czy prawdopodobieństwo wyciągnięcia losu wygrywającego w tej loterii zmieniło się po dołożeniu losów? Wybierz odpowiedź T albo N i jej uzasadnienie spośród A, B albo C.

TakNie
ponieważ
A) różnica liczby losów wygrywających i przegrywających po dołożeniu losów nie jest taka sama jak na początku.
B) dołożono więcej losów przegrywających niż wygrywających.
C) nie zmienił się stosunek liczby losów wygrywających do liczby wszystkich losów.

Punkt kratowy to miejsce przecięcia się linii kwadratowej siatki. Pole wielokąta, którego wierzchołki znajdują się w punktach kratowych kwadratowej siatki na płaszczyźnie, można obliczyć ze wzoru Picka:

 1- P = W + 2 B − 1,

gdzie P oznacza pole wielokąta, W – liczbę punktów kratowych leżących wewnątrz wielokąta, a B – liczbę punktów kratowych leżących na brzegu tego wielokąta.


PIC


W wielokącie przedstawionym na rysunku W = 5 oraz B = 7 , zatem P = 7,5 .
Wewnątrz pewnego wielokąta znajduje się 6 razy mniej punktów kratowych, niż na jego brzegu. Pole tego wielokąta może być równe
A) 2018 B) 2019 C) 2020 D) 2021

Ukryj Podobne zadania

Punkt kratowy to miejsce przecięcia się linii kwadratowej siatki. Pole wielokąta, którego wierzchołki znajdują się w punktach kratowych kwadratowej siatki na płaszczyźnie, można obliczyć ze wzoru Picka:

 1- P = W + 2 B − 1,

gdzie P oznacza pole wielokąta, W – liczbę punktów kratowych leżących wewnątrz wielokąta, a B – liczbę punktów kratowych leżących na brzegu tego wielokąta.


PIC


W wielokącie przedstawionym na rysunku W = 5 oraz B = 7 , zatem P = 7,5 .
Liczba punktów kratowych leżących na brzegu wielokąta o polu 35 może być równa
A) 57 B) 74 C) 37 D) 42

Krawędź podstawy ostrosłupa prawidłowego trójkątnego ma długość 4 cm, a wysokość jego ściany bocznej ma długość 5 cm. Pole powierzchni bocznej tego ostrosłupa jest równe
A) 96 cm 2 B) 48 cm 2 C)  2 80 cm D)  2 30 cm

Na rysunku przedstawiono wykres pewnej funkcji.


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Funkcja przyjmuje wartość największą dla argumentu 4.PF
Funkcja przyjmuje wartość 0 dla czterech argumentów. PF
Ukryj Podobne zadania

Na rysunku przedstawiono wykres pewnej funkcji.


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Funkcja przyjmuje wartość największą dla argumentu 4.PF
Funkcja przyjmuje wartość 0 dla czterech argumentów. PF

Na rysunku przedstawiono wykres pewnej funkcji f .


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Różnica między największą i najmniejszą wartością funkcji jest równa 8.PF
Do wykresu funkcji należy punkt (0,2) . PF

W układzie współrzędnych narysowano wykres funkcji i zaznaczono jego punkty przecięcia z osiami układu.


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Funkcja przyjmuje wartość 0 dla dwóch argumentów: − 2 i 1. PF
Dla wszystkich argumentów większych od − 4 i jednocześnie mniejszych od 1 funkcja przyjmuje wartości ujemne. PF

W układzie współrzędnych narysowano wykres funkcji i zaznaczono jego punkty przecięcia z osiami układu.


PIC


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Funkcja przyjmuje wartość 0 dla dwóch argumentów: 1 i 6. PF
Dla wszystkich argumentów większych od 1 i jednocześnie mniejszych od 6 funkcja przyjmuje wartości ujemne. PF

Na którym rysunku łuk narysowany linią ciągłą jest 4 razy krótszy od łuku narysowanego linią przerywaną?


PIC


Ukryj Podobne zadania

Punkt S = (2 ,8 ) jest środkiem odcinka AB , gdzie A = (x,6) i B = (7,10) dla x równego
A) x = −3 B) x = 3 C) x = − 2 D) x = 2

Rozwiązaniem układu równań { y − x − 1 = 0 x + y − 3 = 0 jest para
A) x = 1 i y = 2 B) x = 1 i y = − 2 C) x = 2 i y = 3 D) x = 3 i y = 2

Ukryj Podobne zadania

Rozwiązaniem układu równań { 21x − 14y = − 28 6y + 9x = 48 jest para liczb
A) x = −3 i y = 5 B) x = − 3 i y = 6 C) x = 5 i y = 2 D) x = 2 i y = 5

Dany jest układ równań

{ x − 3y − 2 = 0 2x + y + 3 = 0.

Rozwiązaniem tego układu równań jest para liczb
A) x = 1 i y = 2 B) x = 0 i y = − 3 C) x = − 2 i y = 1 D) x = − 1 i y = − 1

Dany jest układ równań

{ x − 3y + 5 = 0 2x + y + 3 = 0.

Rozwiązaniem tego układu równań jest para liczb
A) x = 1 i y = 2 B) x = 0 i y = − 3 C) x = − 2 i y = 1 D) x = − 1 i y = − 1

Układ równań { x+ y− 6 = 0 x− y+ 4 = 0 opisuje w układzie współrzędnych na płaszczyźnie punkt
A) (1,5) B) (− 1,5 ) C) (1,− 5) D) (− 1,− 5)

Rozwiązaniem układu równań { 2y − x − 3 = 0 x + 2y − 1 = 0 jest para
A) x = − 1 i y = 1 B) x = 1 i y = 1 C) x = 1 i y = − 1 D) x = − 1 i y = − 1

Rozwiązaniem układu równań { 2x + 5y = − 1 3x − 5y = 11 jest
A) { x = 2 y = 1 B) { x = 2 y = − 1 C) { x = 1 y = 2 D) { x = 1 y = − 2

Za 30 dag orzechów pistacjowych zapłacono 15,75 zł.
Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Za 40 dag tych orzechów należy zapłacić 21 zł.PF
Cena 1 kg tych orzechów jest równa 52,50 zł. PF

Dany jest ostrosłup prawidłowy czworokątny. Pole powierzchni całkowitej tej bryły jest równe P , a jedna ściana boczna ma pole równe 29P . Pole powierzchni bocznej tego ostrosłupa jest równe A/B.
A) 6P 9 B) 8P 9
Pole powierzchni podstawy tego ostrosłupa jest dwa razy C/D niż pole powierzchni jego jednej ściany bocznej.
C) mniejsze D) większe

Ukryj Podobne zadania

Liczba √3 -------- 108⋅ 16 jest równa
A) 12 B) 48 C)  √ -- 27 34 D)  √ --- 4 354

Układ równań { 6x = 10y + 1 8 15y− 9x + 27 = 0
A) ma dokładnie jedno rozwiązanie. B) ma dwa rozwiązania.
C) ma nieskończenie wiele rozwiązań. D) nie ma rozwiązań.

Ukryj Podobne zadania

Układ równań { 1 2 4x − 3y = 2 y− 38x = − 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Układ równań { 1 2 4x − 3y = 2 y− 38x = 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Układ równań { x− 2y = 3 −4x + 8y = − 12.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 2x− 3y = 5 −4x + 6y = − 10.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 2x− 3y = − 5 −4x + 6y = − 10.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { x+ 2y = 1 −4x − 8y = − 4.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 3 y− 8x = − 3 14x − 23y = 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Podczas spaceru w czasie każdych 10 sekund Ewa robi taką samą liczbę a kroków. Ile kroków zrobi Ewa w czasie 3 minut tego spaceru?
A) 6a B) 1 8a C) 30a D) 180a

Na rysunku przedstawiono okrąg o środku O , który jest styczny do wszystkich boków trapezu równoramiennego ABCD . Ramiona AD i BC są styczne do tego okręgu odpowiednio w punktach K i L . Kąt wypukły KOL ma miarę 1 50∘ .


PIC


Miara α kąta ostrego tego trapezu jest równa
A) 75∘ B) 8 0∘ C) 85∘ D) 65∘

Dane są liczby:

I. 0,1(47 ) II. 0,1552 III. 0 ,1(5)

Dla których liczb zaokrąglenie do części setnych jest równe 0,15?
A) I, II i III B) Tylko I i II C) Tylko I i III D) Tylko I E) Tylko III

Korzystając z tego, że  3 13 = 2197 i  3 1 5 = 3375 , oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

√3----------- 2 197⋅ 2197 = 19 6 PF
3√ ----- √3----- 2197 ⋅15 = 3 375⋅ 13 PF

W kwadracie ABCD narysowano dwa półokręgi o średnicach AB i BC (patrz rysunek).


PIC


Pole zacieniowanego obszaru jest równe
A)  √ -- 2 2 B) 4 − π C) 1 D) 2

Marta przygotowała dwa żetony takie, że suma liczb zapisanych na obu stronach każdego żetonu jest równa zero. Widok jednej ze stron tych żetonów przedstawiono poniżej.


PIC


Jakie liczby znajdują się na niewidocznych stronach tych żetonów?
A) − 25 i − 8 B) − 25 i 8 C) 25 i − 8 D) 25 i 8

Strona 1 z 61
spinner