Obwód trójkąta prostokątnego wynosi 60 cm, a tangens jednego z kątów ostrych jest równy . Oblicz pole tego trójkąta oraz długość wysokości poprowadzonej z wierzchołka kąta prostego na przeciwprostokątną.
/Szkoła średnia/Geometria/Planimetria/Trójkąt
Obwód trójkąta prostokątnego wynosi 72 cm, a tangens jednego z kątów ostrych jest równy . Oblicz pole tego trójkąta oraz długość wysokości poprowadzonej z wierzchołka kąta prostego na przeciwprostokątną.
Na bokach trójkąta równobocznego wybrano kolejno punkty tak, że , i .
Wykaż, że trójkąt jest trójkątem równobocznym o polu trzy razy mniejszym od pola trójkąta .
W trójkącie dane są długości dwóch boków , oraz miara kąta . Oblicz długość środkowej tego trójkąta poprowadzonej z wierzchołka A.
Dany jest trójkąt prostokątny o polu i kącie ostrym . Oblicz długości przyprostokątnych tego trójkąta.
Dany jest trójkąt prostokątny o polu i kącie ostrym . Oblicz długości przyprostokątnych tego trójkąta.
Dany jest trójkąt prostokątny o polu i kącie ostrym . Oblicz długości przyprostokątnych tego trójkąta.
Dany jest trójkąt równoboczny , w którym . Na boku tego trójkąta wybrano taki punkt , że . Odcinek przecina wysokość trójkąta w punkcie (zobacz rysunek).
Oblicz długość odcinka .
Przez środek okręgu wpisanego w trójkąt poprowadzono prostą równoległą do boku , która przecina boki i odpowiednio w punktach i .
Wykaż, że .
Dany jest trójkąt o wymiarach . Oblicz obwód trójkąta podobnego w skali 5.
Dany jest trójkąt o wymiarach . Oblicz obwód trójkąta podobnego w skali .
W trójkącie równobocznym połączono środki wysokości otrzymując trójkąt . Oblicz stosunek pól trójkątów i .
Liczby są długościami boków trójkąta równoramiennego. Oblicz .
Liczby są długościami boków trójkąta równoramiennego. Oblicz długość boku .
Liczby są długościami boków trójkąta równoramiennego. Oblicz długość boku .
Dany jest trójkąt prostokątny , w którym oraz . Punkty i leżą na bokach – odpowiednio – i tak, że (zobacz rysunek). Odcinek przecina wysokość tego trójkąta w punkcie , a ponadto .
Wykaż, że .
Wykaż, że wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego dzieli przeciwprostokątną na odcinki i , których stosunek długości jest równy stosunkowi kwadratów długości przyprostokątnych odpowiednio i tego trójkąta.
Na okręgu o promieniu 1 opisano trójkąt prostokątny, którego przyprostokątne mają długości i .
- Wyznacz jako funkcję i określ dziedzinę tej funkcji.
- Sporządź wykres tej funkcji.
Wysokość trójkąta równobocznego jest o 3 cm krótsza od długości jego boku. Oblicz promień okręgu opisanego na tym trójkącie.
Na zewnątrz trójkąta prostokątnego , w którym oraz zbudowano kwadrat .
Punkt leży na prostej i kąt . Oblicz pole trójkąta .
Sinus kąta trójkąta równoramiennego jest równy . Pole kwadratu , wpisanego w ten trójkąt (zobacz rysunek), jest równe 4. Oblicz pole trójkąta .
Dany jest trójkąt prostokątny , w którym i . Niech oznacza punkt wspólny wysokości poprowadzonej z wierzchołka kąta prostego i przeciwprostokątnej tego trójkąta. Wykaż, że .
W trójkącie ostrokątnym bok ma długość , długość boku jest równa oraz . Dwusieczna kąta przecina bok trójkąta w punkcie i odcinek ma długość . Wykaż, że
W trójkącie poprowadzono odcinki i w ten sposób, że punkty i są środkami odpowiednio odcinków i . Wykaż, że pole trójkąta jest siedem razy mniejsze od pola trójkąta .
W trójkącie dane są , i . Oblicz długości pozostałych boków tego trójkąta i promień okręgu opisanego na tym trójkącie.
Oblicz cosinus najmniejszego kąta trójkąta o bokach 2 cm, 4 cm, 5 cm.
Dany jest trójkąt o bokach długości 6, 7 oraz 8. Oblicz cosinus najmniejszego kąta tego trójkąta.
Dany jest trójkąt o bokach długości 6, 7 oraz 8. Oblicz cosinus największego kąta tego trójkąta.