Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt

Wyszukiwanie zadań

Na bokach trójkąta ABC zbudowano kwadraty ABKL , BCMN i CAOP (zobacz rysunek).


PIC


Kąty BAC i ABC są ostre oraz suma ich tangensów jest równa 52 . Wykaż, że jeżeli pole kwadratu ABKL jest pięć razy większe od pola trójkąta ABC , to suma pól kwadratów BCMN i CAOP też jest pięć razy większa od pola trójkąta ABC .

W trójkącie ABC środkowa AD jest prostopadła do boku AC oraz |AB | = 2|AC | . Oblicz miarę kąta BAC .

W trójkącie równoramiennym wysokość poprowadzona do podstawy ma długość  √ -- 6 6 . Ramię jest o 30% krótsze od podstawy. Oblicz obwód tego trójkąta.

W trójkącie ABC dane są kąt  ∘ |∡ABC | = 12 0 , |AC | = 6 i |BC | = 3 . Dwusieczna kąta ∡ACB przecina bok AB w punkcie D . Oblicz długość odcinka CD .

W trójkąt prostokątny ABC o przyprostokątnych długości |AC | = 3 i |BC | = 4 wpisano dwa przystające okręgi w ten sposób, że są one wzajemnie styczne oraz jeden z nich jest styczny do boków AB i BC , a drugi do boków AC i BC .


PIC


Oblicz długość promienia tych okręgów.

Wykaż, że istnieją dokładnie dwie liczby naturalne n takie, że trójkąt o bokach n ,n+ 2,n + 3 jest rozwartokątny.

W trójkącie ABC , w którym  ∘ |∡ACB | = 70 połączono środek okręgu wpisanego O z wierzchołkami A i B . Oblicz miarę kąta AOB .


PIC


W trójkącie ABC odcinek EF o końcach należących do boków odpowiednio AB i AC przecina środkową CD w punkcie G , oraz odcinek EF jest równoległy do odcinka BC (patrz rysunek). Oblicz długość odcinka BC wiedząc, że |EG | = 2 i |F G| = 4 .


PIC


Dany jest trójkąt prostokątny ABC , w którym przyprostokątna BC ma długość 6. Punkt E jest środkiem przeciwprostokątnej AB , spodek D wysokości CD leży między punktami B i E , a odległość między punktami D i E jest równa 7 (zobacz rysunek).


PIC


Oblicz obwód trójkąta ABC .

Dany jest trójkąt prostokątny ABC . Na przyprostokątnych AC i AB tego trójkąta obrano odpowiednio punkty D i G . Na przeciwprostokątnej BC wyznaczono punkty E i F takie, że |∡DEC | = |∡BGF | = 9 0∘ (zobacz rysunek). Wykaż, że trójkąt CDE jest podobny do trójkąta FBG .


PIC


Ukryj Podobne zadania

Dany jest trójkąt prostokątny ABC . Na przyprostokątnych AC i AB tego trójkąta obrano odpowiednio punkty D i G . Na przeciwprostokątnej BC wyznaczono punkty E i F takie, że |∡DEC | = |∡GF B | = 9 0∘ (zobacz rysunek). Wykaż, że trójkąt CDE jest podobny do trójkąta GBF .


PIC


Dany jest trójkąt prostokątny ABC . Na przyprostokątnych AB i AC tego trójkąta obrano odpowiednio punkty D i E takie, że DE ∥ BC . Na przeciwprostokątnej BC wyznaczono punkt F taki, że |∡DF C | = 90∘ (zobacz rysunek). Wykaż, że trójkąt ADE jest podobny do trójkąta FBD .


PIC


W trójkącie równobocznym ABC obrano na boku BC taki punkt E , że |BE | : |EC | = 1 : 2 . Oblicz tangens kąta ∡BAE .

Ukryj Podobne zadania

Na boku AB trójkąta równobocznego ABC wybrano punkt D taki, że |AD | : |DB | = 2 : 3 . Oblicz tangens kąta ACD .

Na zewnątrz równoramiennego trójkąta prostokątnego o przyprostokątnych równych a zbudowano kwadraty tak, że bok każdego kwadratu jest jednocześnie bokiem trójkąta. Środki symetrii tych kwadratów połączono odcinkami i otrzymano trójkąt MNP . Wykaż, że pole trójkąta MNP jest równe  2 a .


ZINFO-FIGURE


Ukryj Podobne zadania

Na zewnątrz równoramiennego trójkąta prostokątnego ABC zbudowano kwadraty tak, że bok każdego kwadratu jest jednocześnie bokiem trójkąta. Środki symetrii tych kwadratów połączono odcinkami i otrzymano trójkąt MNP . Wykaż, że pole trójkąta MNP jest dwa razy większe od pola trójkąta ABC .


ZINFO-FIGURE


W trójkącie prostokątnym równoramiennym ABC o przeciwprostokątnej BC punkt D jest środkiem ramienia AB . Odcinek CD ma długość 5 (zobacz rysunek).


ZINFO-FIGURE


Oblicz obwód trójkąta ABC .

W trójkącie równoramiennym dane są długości podstawy a = 12 cm i wysokości h = 18 cm. W trójkąt ten wpisano prostokąt w ten sposób, że dwa wierzchołki prostokąta leżą na podstawie, a po jednym na każdym ramieniu trójkąta, przy czym przekątne prostokąta są równoległe do ramion trójkąta. Oblicz długości boków prostokąta.

Uzasadnij, że nie istnieje trójkąt prostokątny, w którym przeciwprostokątna ma długość 24, a kąty ostre α i β są takie, że cos α = 34 i tg β = 43 .

Każdy kąt trójkąta ABC ma miarę mniejszą niż  ∘ 12 0 . Na bokach tego trójkąta zbudowano trójkąty równoboczne ABM , BCK i CAL (zobacz rysunek).


ZINFO-FIGURE


  • Wykaż, że |AK | = |BL | = |CM | .

  • Wykaż, że proste AK , BL i CM przecinają się w jednym punkcie (jest to tzw. punkt Torricellego-Fermata).

Okrąg o promieniu 4 jest wpisany w trójkąt. Punkt styczności podzielił jeden z boków na odcinki o długości 6 i 8. Oblicz długości boków tego trójkąta.

Oblicz pole trójkąta równoramiennego, w którym odległość wierzchołka kąta prostego od przeciwprostokątnej jest równa 5 cm.

W trójkącie ABC boki BC i AC są równej długości. Prosta k jest prostopadła do podstawy AB tego trójkąta i przecina boki AB oraz BC w punktach – odpowiednio – D i E . Pole czworokąta ADEC jest 17 razy większe od pola trójkąta BED . Oblicz |CE| |EB| .


PIC


Ukryj Podobne zadania

W trójkącie ABC boki BC i AC są równej długości. Prosta k jest prostopadła do podstawy AB tego trójkąta i przecina boki AB oraz BC w punktach – odpowiednio – D i E . Oblicz stosunek pola czworokąta ADEC do pola trójkąta BED jeżeli |AD| |DB| = 7 .


PIC


W trójkącie ABC długości boków AB i AC są odpowiednio równe 4 i 6. Punkt M jest środkiem odcinka BC , a długość środkowej AN trójkąta AMB jest równa 3. Oblicz długość boku BC .

Strona 2 z 24
spinner