Odcinki i są równoległe do boku trójkąta , a odcinki i są równoległe do boku . Uzasadnij, że jeżeli , to .
Odcinki i są równoległe do boku trójkąta , a odcinki i są równoległe do boku . Uzasadnij, że jeżeli , to .
Odcinek jest środkową trójkąta . Udowodnij, że .
Okrąg wpisany w trójkąt jest styczny do boków i w punktach i odpowiednio. Na bokach i tego trójkąta wybrano punkty i w ten sposób, że odcinek jest styczny do okręgu wpisanego w trójkąt (zobacz rysunek).
Wykaż, że jeżeli , i , to trójkąt jest rozwartokątny.
Wykaż, że suma odległości dowolnego punktu wewnętrznego trójkąta od jego wierzchołków jest większa od połowy obwodu trójkąta.
W trójkącie ostrokątnym prawdziwa jest równość . Wykaż, że kąt jest dwa razy większy od kąta .
Wykaż, że jeżeli są kątami trójkąta, to
Wyznacz długości boków trójkąta wiedząc, że są one kolejnymi liczbami naturalnymi zaś największy kąt jest dwa razy większy od kąta najmniejszego.
Przez środek przyprostokątnej trójkąta prostokątnego poprowadzono prostą prostopadłą do przeciwprostokątnej . Prosta ta przecina proste i odpowiednio w punktach i . Wykaż, że .
Przez środek przyprostokątnej trójkąta prostokątnego poprowadzono prostą prostopadłą do przeciwprostokątnej . Prosta ta przecina proste i odpowiednio w punktach i . Wykaż, że skala podobieństwa trójkątów i jest równa .
Na bokach , i trójkąta wybrano odpowiednio punkty i . Wykaż, że okręgi opisane na trójkątach , i przecinają się w jednym punkcie.
W trójkącie prostokątnym o kącie prostym w wierzchołku obrano taki punkt , że pola trójkątów , i są równe. Oblicz długość odcinka , wiedząc, że .
Na zewnątrz równoramiennego trójkąta prostokątnego zbudowano kwadraty – jeden na przyprostokątnej, a drugi na przeciwprostokątnej. Wykaż, że przeciwprostokątna dzieli odcinek łączący środki kwadratów na dwie równe części.
Wykaż, że jeżeli są długościami boków trójkąta leżącymi naprzeciwko odpowiednio kątów o miarach to .
Każdy kąt trójkąta ma miarę mniejszą niż . Udowodnij, że wewnątrz trójkąta istnieje punkt taki, że
Przez środek przyprostokątnej trójkąta prostokątnego poprowadzono prostą prostopadłą do przeciwprostokątnej . Prosta ta przecina proste i odpowiednio w punktach i . Wykaż, że .
Styczna w punkcie do okręgu opisanego na trójkącie przecina prostą w punkcie . Niech będzie punktem przecięcia dwusiecznej kąta z prostą . Udowodnić, że .
W trójkąt równoboczny wpisane są 3 koła o równych promieniach, przy czym każde koło jest styczne do dwóch boków trójkąta oraz do dwóch pozostałych kół. Oblicz stosunek sumy pól tych kół do pola trójkąta.
W trójkącie , o bokach długości , połączono odcinkiem wierzchołek z punktem na boku takim, że i . Uzasadnij, że jeżeli , to (twierdzenie Stewarta).
Punkt leży na boku trójkąta równoramiennego , w którym .
Odcinek dzieli trójkąt na dwa trójkąty równoramienne w taki sposób, że oraz . Udowodnij, że .
Punkt leży na boku trójkąta równoramiennego, w którym . Odcinek dzieli trójkąt na dwa trójkąty równoramienne takie, że i . Wykaż, że .
Kąty w trójkącie mają miary: . Wykaż, że długości boków tego trójkąta spełniają równość: .
Na bokach trójkąta równobocznego (na zewnątrz tego trójkąta) zbudowano kwadraty i . Udowodnij, że trójkąt jest równoboczny.