Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

W trójkącie równoramiennym ABC (AC = BC ) poprowadzono wysokości CK i AM . Wiedząc że AB 2 = CK ⋅AM wyznacz cosinus kąta przy podstawie trójkąta.

Wykaż, że istnieją dokładnie dwie liczby naturalne n takie, że trójkąt o bokach n ,n+ 2,n + 3 jest rozwartokątny.

Środkowa CD trójkąta ABC jest równa bokowi AC . Wyznacz kąty trójkąta ABC wiedząc, że |AB | = 4 i  √ -- |BC | = 2 3 .

Wyznacz miary kątów trójkąta, w którym wysokość i środkowa poprowadzona z jednego wierzchołka dzielą kąt przy tym wierzchołku na 3 równe części.

Trójkąty ABC i DEF wpisano w ten sam okrąg. Udowodnij, że równość obwodów tych trójkątów jest równoważna równości sum sinusów ich kątów wewnętrznych.

W trójkącie równoramiennym ABC , w którym |AC | = |BC | wysokość CE jest dwa razy dłuższa od wysokości AD (patrz rysunek). Oblicz kosinusy wszystkich kątów wewnętrznych trójkąta ABC .


PIC


W trójkącie ostrokątnym ABC prawdziwa jest równość  2 2 |BC | − |AC | = |AB |⋅|AC | . Wykaż, że kąt BAC jest dwa razy większy od kąta ABC .

Wykaż, że jeżeli α,β ,γ są kątami trójkąta, to

 α β γ sinα + sin β + sin γ = 4co s--cos --cos -. 2 2 2

Wyznacz długości boków trójkąta wiedząc, że są one kolejnymi liczbami naturalnymi zaś największy kąt jest dwa razy większy od kąta najmniejszego.

Wykaż, że jeżeli a,b,c są długościami boków trójkąta leżącymi naprzeciwko odpowiednio kątów o miarach α ≤ β ≤ γ to a ≤ b ≤ c .

W trójkącie a : b : c = 4 : 5 : 6 . Wykaż, że w tym trójkącie γ = 2α .

Boki trójkąta A1B 1C1 są styczne do okręgu w punktach A , B, C , a kąty trójkąta ABC są odpowiednio równe α, β, γ . Oblicz miary kątów trójkąta A 1B1C 1 .


PIC


W trójkącie równoramiennym (patrz rysunek) długość podstawy wynosi a , zaś wysokości opuszczone odpowiednio na podstawę i ramię są równe H i h . Kąt między ramieniem trójkąta i wysokością opuszczoną na podstawę ma miarę α .


PIC


  • Wyraź tg α w zależności od wielkości a i H .
  • Wyraź co sα w zależności od wielkości a i h .
  • Wykaż, że jeśli  2 a = H ⋅h , to  √ -- sin α = 2− 1 .

Oblicz miary kątów trójkąta, w którym długości boków tworzą ciąg geometryczny, a miary kątów tworzą ciąg arytmetyczny.