Zadania.info Największy internetowy zbiór zadań z matematyki

/Konkursy/Zadania testowe

Wyszukiwanie zadań

Wiadomo, że --1- 1+ 1x = 2 . Wówczas wartość wyrażenia --1--- 1+-11 1+x jest równa
A) 32 B) 13 C) 23 D) 4 E) 1 2

Gwiazda, pokazana na rysunku obok, utworzona jest z 12 identycznych trójkątów równobocznych. Obwód gwiazdy jest równy 36 cm. Ile jest równy obwód zacieniowanego sześciokąta?


PIC


A) 6 cm B) 12 cm C) 18 cm D) 24 cm E) 30 cm

Na rysunku obok mamy trzy początkowe układanki. Ile jest potrzebnych białych kwadracików jednostkowych, aby ułożyć dziesiątą układankę w tym ciągu?


PIC


A) 76 B) 80 C) 84 D) 92 E) 100

Spośród trójkątów równoramiennych o ramionach długości 7 i podstawie, której długość wyraża się liczbą całkowitą, wybieramy trójkąt o największym obwodzie. Obwód ten jest równy
A) 14 B) 15 C) 21 D) 27 E) 28

Ile z poniższych działań ma wartość różną od 6?

2− (−4 ), (− 2)⋅(− 3), 2− 8, 0 − (− 6), (− 12) : (− 2)

A) 0 B) 1 C) 2 D) 4 E) 5

Ile jest liczb dziesięciocyfrowych, które można napisać przy użyciu cyfr 1,2 i 3 tak, aby każde dwie sąsiednie cyfry w ich zapisach różniły się o jeden?
A) 16 B) 32 C) 64 D) 80 E) 100

Jakim procentem liczby elementów zboru 1,2,3,4,...,10000 jest liczba tych jego elementów, które są kwadratami liczb naturalnych?
A) 1% B) 5% C) 10% D) 50% E) 0,1%

Różnica

 2 2 2 2 (1 + 2 + 3 + ⋅⋅⋅+ 2005 ) − (1 ⋅3+ 2⋅4 + 3 ⋅5 + ⋅⋅⋅+ 2004 ⋅2006 )

jest równa
A) 2000 B) 2004 C) 2005 D) 2006 E) 0

Ile jest liczb 2008–cyfrowych, których każde dwie kolejne cyfry tworzą liczbę podzielną przez 17 lub przez 23?
A) 5 B) 6 C) 7 D) 9 E) Więcej niż 9

Każda z liczb 257,338 ma tę własność, że jeśli jej cyfry zapiszemy w odwrotnej kolejności, to otrzymamy liczbę od niej większą. Ile jest wszystkich liczb trzycyfrowych o tej własności?
A) 124 B) 252 C) 280 D) 288 E) 360

W trójkącie równoramiennym ABC długość dwusiecznej CD kąta przy wierzchołku C jest równa długości podstawy BC . Ile jest równa miara kąta CDA ?
A) 90∘ B) 100∘ C)  ∘ 10 8 D)  ∘ 120 E) Nie da się tego rozstrzygnąć

Kwadrat o polu  2 125 cm podzielono na pięć części o równych polach. Cztery z nich to kwadraty, a piąta to sześciokąt w kształcie litery L. Jaka jest długość najkrótszego boku tego sześciokąta?


PIC


A) 1 cm B) 1,2 cm C)  √ -- 2( 5 − 2) cm D)  √ -- 3( 5− 1) cm E)  √ -- 5( 5 − 2) cm

Dwa trójkąty równoboczne o obwodach po 18 cm nałożono na siebie tak, że odpowiednie pary ich boków są do siebie równoległe. Jaki jest obwód zacieniowanego sześciokąta?


PIC


A) 9 cm B) 12 cm C) 13 cm D) 14 cm E) 18 cm

Rysunek obok przedstawia trójkąt równoramienny ABC (|AB | = |AC | ), w którym |∡BP C| = 120 ∘ i |∡ABP | = 50∘ . Jaka jest miara kąta PBC ?


PIC


A) 5 ∘ B) 10∘ C) 15 ∘ D) 20 ∘ E) 25∘

Z siatki składającej się z 8 trójkątów równobocznych można skleić ośmiościan foremny, jak na rysunku obok. Aby powstał ośmiościan magiczny, trzeba zamienić litery A ,B,C ,D ,E na liczby 2,4,6,7,8 (każdą literę na inną liczbę) w ten sposób, by sumy liczb na czterech ścianach przy każdym wierzchołku były sobie równe. Ile wówczas będzie równe B + D ?


PIC


A) 6 B) 7 C) 8 D) 9 E) 10

Na rysunku poniżej punkty B,C ,D dzielą odcinek AE na cztery równe części. Narysowane trzy łuki są półokręgami o średnicach odpowiednio AE , AD i DE . Jaki jest stosunek długości półokręgu AE do sumy długości półokręgów AD i DE ?


PIC


A) 1:2 B) 2:3 C) 2:1 D) 3:2 E) 1:1

Ile dróg prowadzi od górnego do dolnego końca przeciwprostokątnej dużego trójkąta, jeśli wolno poruszać się po bokach małych trójkątów w sposób przedstawiony na rysunku


PIC


A) 16 B) 27 C) 64 D) 90 E) 111

Wszystkie potęgi liczby 3 oraz wszystkie te dodatnie liczby naturalne, które są skończonymi sumami różnych potęg liczby 3, ustawiamy w ciąg rosnący 1,3,4,9,10,12,13,…Ile jest równy setny wyraz tego ciągu?
A) 150 B) 981 C) 1234 D) 2401 E)  100 3

Starożytni Egipcjanie używali do wyznaczania kąta prostego linki z dwoma węzłami – złączone końce S i T i owe węzły po naprężeniu linki tworzyły trójkąt prostokątny. Na takiej lince długości 12m węzeł X jest w odległości 3m od końca S . W jakiej odległości od końca T jest drugi węzeł, jeżeli po złączeniu końców otrzymujemy kąt prosty w węźle X ?


PIC


A) 3m B) 4m C) 5m D) 6m E) Inna liczba

W roku 2008 cyfra jedności jest czterokrotnością cyfry tysięcy. Jaka jest minimalna liczba lat, które muszą upłynąć, by taka sytuacja się powtórzyła?
A) 10 B) 20 C) 100 D) 2008 E) Inna odpowiedź

Strona 2 z 13
spinner