Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

W trójkącie równoramiennym dane są długości podstawy a = 12 cm i wysokości h = 18 cm. W trójkąt ten wpisano prostokąt w ten sposób, że dwa wierzchołki prostokąta leżą na podstawie, a po jednym na każdym ramieniu trójkąta, przy czym przekątne prostokąta są równoległe do ramion trójkąta. Oblicz długości boków prostokąta.

W trójkąt równoramienny, którego ramię jest równe 5 cm, a podstawa równa się 6 cm, wpisano prostokąt w ten sposób, że dwa jego wierzchołki leżą na podstawie, a pozostałe leżą na ramionach trójkąta. Wyznacz obwód i pole prostokąta jako funkcję jego wysokości.

W trójkąt równoramienny wpisano kwadrat w ten sposób, że dwa jego wierzchołki leżą na podstawie trójkąta, a dwa pozostałe są środkami ramion. Jaką część pola trójkąta stanowi pole kwadratu? Odpowiedź uzasadnij.

W trójkąt równoramienny ABC (|AC | = |BC | ) o długości podstawy |AB | = 12 cm wpisano kwadrat o boku długości 5 cm. Oblicz pole trójkąta ABC .


PIC


*Ukryj

W trójkąt równoramienny ABC (|AC | = |BC | ) o długości podstawy |AB | = 14 cm wpisano kwadrat o boku długości 6 cm. Oblicz pole trójkąta ABC .


PIC


W trójkąt równoramienny o ramieniu 10 i podstawie 12 wpisano prostokąt o stosunku boków 1:4 w ten sposób, ze krótszy bok jest zawarty w podstawie trójkąta. Oblicz długości boków prostokąta.