Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria

Wyszukiwanie zadań

Dany jest trójkąt prostokątny o długościach boków a,b,c , gdzie a < b < c . Obracając ten trójkąt, wokół prostej zawierającej dłuższą przyprostokątną o kąt 360∘ , otrzymujemy bryłę, której pole powierzchni całkowitej jest równe
A)  1 2 V = 3a bπ B)  2 V = b π + πbc C) V = πac D)  2 V = a π + πac

Zbiór punktów płaszczyzny, których współrzędne spełniają równanie (x + 1)2 − y2 = 0 , jest
A) parabolą B) prostą C) okręgiem D) sumą dwóch prostych

Ukryj Podobne zadania

Zbiór punktów płaszczyzny, których współrzędne spełniają równanie (x + 1)2 + y2 = 0 , jest
A) parabolą B) punktem C) okręgiem D) sumą dwóch prostych

Miara kąta wpisanego opartego na 3 5 okręgu wynosi:
A) 72∘ B) 105∘ C) 10 8∘ D) 21 6∘

Ukryj Podobne zadania

Miara kąta wpisanego opartego na łuku długości 7- 18 długości całego okręgu wynosi
A) 70∘ B) 140∘ C) 28 0∘ D) 21 0∘

Kąt wpisany oparty jest na łuku, którego długość jest równa 5- 12 długości okręgu. Miara tego kąta wynosi
A) 75∘ B) 300∘ C) 15 0∘ D) 37 ,5 ∘

Jaką miarę ma kąt wpisany oparty na 5 9 łuku okręgu?
A) 100 ∘ B) 200∘ C) 60 ∘ D) 50∘

Miara kąta wpisanego opartego na 5 6 długości okręgu jest równa
A) 30∘ B) 60∘ C) 15 0∘ D) 30 0∘

Dane są dwa okręgi: okrąg o środku w punkcie O i promieniu 5 oraz okrąg o środku w punkcie P i promieniu 3. Odcinek OP ma długość 16. Prosta AB jest styczna do tych okręgów w punktach A i B . Ponadto prosta AB przecina odcinek OP w punkcie K (zobacz rysunek).


PIC


Wtedy
A) |OK | = 6 B) |OK | = 8 C) |OK | = 10 D) |OK | = 12

Ukryj Podobne zadania

Dane są dwa okręgi: okrąg o środku w punkcie O i promieniu 4 oraz okrąg o środku w punkcie P i promieniu 6. Odcinek OP ma długość 25. Prosta AB jest styczna do tych okręgów w punktach A i B . Ponadto prosta AB przecina odcinek OP w punkcie K (zobacz rysunek).


PIC


Wtedy
A) |OK | = 6 B) |OK | = 8 C) |OK | = 10 D) |OK | = 12

Jeśli promień podstawy stożka zwiększymy trzykrotnie, a wysokość zmniejszymy trzykrotnie, to objętość stożka
A) zwiększy się dziewięciokrotnie B) nie zmieni się
C) zwiększy się trzykrotnie D) zwiększy się sześciokrotnie

Ukryj Podobne zadania

Jeśli promień podstawy stożka zmniejszymy trzykrotnie, a wysokość zwiększymy trzykrotnie, to objętość stożka
A) zwiększy się dziewięciokrotnie B) nie zmieni się
C) zwiększy się trzykrotnie D) zmniejszy się trzykrotnie

Jeśli promień podstawy stożka zwiększymy dwukrotnie, a wysokość zmniejszymy dwukrotnie, to objętość stożka
A) zwiększy się dwukrotnie B) nie zmieni się
C) zwiększy się czterokrotnie D) zmniejszy się czterokrotnie

Końce odcinka AB o długości 9 są środkami okręgów o promieniach 6 i 4 (zobacz rysunek).


PIC


Punkt C leży na odcinku AB i jest środkiem takiego okręgu, o promieniu większym od 6, że dwa dane okręgi są do niego wewnętrznie styczne. Promień okręgu o środku C ma długość
A) 6,5 B) 7,5 C) 8,5 D) 9,5

W kartezjańskim układzie współrzędnych (x ,y) proste o równaniach:

  •  √ -- y = 3x + 6

  •  √ -- y = − 3x + 6

  •  √1- y = − 3x − 2

przecinają się w punktach, które są wierzchołkami trójkąta KLM . Trójkąt KLM jest

A) równoramienny,B) prostokątny,

ponieważ

1)Ox przechodzi przez jeden z wierzchołków tego trójkąta i środek jednego z boków tego trójkąta.
2) dwie z tych prostych są prostopadłe.
3) Oy zawiera dwusieczną tego trójkąta.
Ukryj Podobne zadania

W kartezjańskim układzie współrzędnych (x ,y) proste o równaniach:

  •  √ -- y = 3x + 6

  •  √ -- y = − 3x − 6

  •  √ -- x = 3

przecinają się w punktach, które są wierzchołkami trójkąta KLM . Trójkąt KLM jest

A) równoramienny,B) prostokątny,

ponieważ

1)Ox jest osią symetrii tego trójkąta.
2) dwie z tych prostych są prostopadłe.
3) jedna z tych prostych jest równoległa do osi Oy .

Jeżeli α jest kątem wewnętrznym trójkąta ABC i  ∘ cosα = cos(180 − α ) , to trójkąt ABC jest trójkątem
A) ostrokątnym B) prostokątnym C) rozwartokątnym D) równobocznym

Podstawą graniastosłupa prostego jest prostokąt o bokach długości 3 i 4. Kąt α , jaki przekątna tego graniastosłupa tworzy z jego podstawą, jest równy 45∘ (zobacz rysunek).


ZINFO-FIGURE


Wysokość graniastosłupa jest równa
A) 5 B)  √ -- 3 2 C)  √ -- 5 2 D) 5√-3 3

Ukryj Podobne zadania

Podstawą graniastosłupa prostego jest prostokąt o bokach długości 3 i 4. Kąt α , jaki tworzą dwie przekątne tego graniastosłupa, jest równy 60∘ (zobacz rysunek).


ZINFO-FIGURE


Wysokość graniastosłupa jest równa
A) 10 B)  √ - 25--3- 2 C) 5√ 3- D)  √ - 52-3

Graniastosłup prosty ma pole powierzchni całkowitej równe 94, a w jego podstawie jest prostokąt o bokach długości 3 i 4 (zobacz rysunek).


PIC


Kąt α , jaki przekątna tego graniastosłupa tworzy z jego podstawą, jest równy
A) 30∘ B) 4 5∘ C) 90∘ D)  ∘ 60

Podstawą graniastosłupa prostego jest prostokąt o bokach długości 3 i 4. Kąt α , jaki przekątna tego graniastosłupa tworzy z jego podstawą, jest równy 30∘ (zobacz rysunek).


PIC


Wysokość graniastosłupa jest równa
A) 5√ 3- B)  √- 5-3- 2 C)  √ - 5-33 D)  √ -- 5 2

Ukryj Podobne zadania

Kąt α na rysunku obok ma miarę


PIC


A) 70∘ B) 6 0∘ C) 50∘ D) 40∘

Punkty A ,B,C i D leżą na okręgu o środku w punkcie O . Cięciwy DB i AC przecinają się w punkcie E , |∡ACB | = 58∘ oraz |∡AEB | = 145∘ (zobacz rysunek).


PIC


Miara kąta DAC jest równa
A) 58∘ B) 8 7∘ C) 32∘ D) 85∘

Punkty A ,B,C i D leżą na okręgu o środku w punkcie O . Cięciwy DB i AC przecinają się w punkcie E , |∡ACB | = 55∘ oraz |∡AEB | = 140∘ (zobacz rysunek).


PIC


Miara kąta DAC jest równa
A) 45∘ B) 5 5∘ C) 70∘ D) 85∘

Objętość kuli o promieniu r = π dm jest równa
A) 43 π dm 3 B) 43π4 dm 3 C) 3π 4 dm 3 4 D) 4π3 dm 3 3

Ukryj Podobne zadania

Objętość kuli o promieniu r = 3π dm jest równa
A) 36π 4 dm 3 B) 4π 4 dm 3 C) 27π 4 dm 3 D) 36 π3 dm 3

Prosta k jest styczna do okręgu o równaniu  2 2 x + y − 6y − 16 = 0 . Odległość środka tego okręgu od prostej k jest równa
A) 9 B) 4 C) 25 D) 5

Ukryj Podobne zadania

Prosta k jest styczna do okręgu o równaniu  2 2 x + y + 12x + 2 7 = 0 . Odległość środka tego okręgu od prostej k jest równa
A) 9 B) 3 C) 25 D) 5

Pole trójkąta ABC przedstawionego na rysunku jest równe


PIC


A)  √ -- 6 3 + 18 B)  √ -- 12 3 + 36 C)  √ -- 6 3 + 9 D)  √ -- 3 6 + 9

W układzie współrzędnych dane są punkty A = (a,6) oraz B = (− 8,b) . Punkt C = (1,2) jest takim punktem odcinka AB , że |AC | = 14|AB | . Wynika stąd, że
A) a = 1 0 i b = − 2 B) a = 4 i b = − 10 C) a = 2 i b = − 4 D) a = − 6 i b = 3

Dany jest kwadrat o przekątnej 6. Z wierzchołka kwadratu zatoczono koło o promieniu równym długości boku kwadratu. Pole figury będącej różnicą kwadratu i koła jest równe
A) 18 − 4,5π B) 4,5 π − 6 C) 6 − 4,5π D) 32 − 8 π

Ukryj Podobne zadania

Dany jest kwadrat o przekątnej 2. Z wierzchołka kwadratu zatoczono koło o promieniu równym długości boku kwadratu. Pole figury będącej różnicą kwadratu i koła jest równe
A) 8π − 32 B) 2 − 0,5 π C) 2 − π D) 4 − 2π

Dany jest kwadrat o przekątnej 4. Z wierzchołka kwadratu zatoczono koło o promieniu równym długości boku kwadratu. Pole figury będącej różnicą kwadratu i koła jest równe
A) 8 − 2π B) 4,5 π − 6 C) 6 − 4,5π D) 32 − 8 π

Pole trójkąta DEC wynosi  2 4 cm . Wiadomo, że  √ -- |AB | = 3|DE | oraz DE ∥ AB . Zatem pole trójkąta ABC jest równe


PIC


A)  √ -- 4 3 cm 2 B) 12 cm 2 C)  √ -- 16 3 cm 2 D) 8 cm 2

Prosta k przecina oś Oy układu współrzędnych w punkcie (0,3) i jest prostopadła do prostej o równaniu y = − 2x . Wówczas prosta k przecina oś Ox układu współrzędnych w punkcie
A) ( 3,0) 2 B) (− 3,0) C) (6,0) D) (− 6,0)

Przekątna przekroju osiowego walca jest o 13 dłuższa od promienia podstawy tego walca, oraz o 2 dłuższa od jego wysokości. Pole podstawy tego walca jest równe
A) 16π B) 64π C) 22 5π D) 8π

Promień AS podstawy walca jest równy wysokości OS tego walca. Sinus kąta OAS (zobacz rysunek) jest równy


PIC


A) √ - -23 B) √ - -22 C) 12 D) 1

Ukryj Podobne zadania

Promień AS podstawy walca jest równy wysokości OS tego walca. Tangens kąta OAS (zobacz rysunek) jest równy


PIC


A) √ - -33 B) √ - -22 C) 12 D) 1

Promień AS podstawy walca jest równy połowie wysokości OS tego walca. Sinus kąta OAS (zobacz rysunek) jest równy


PIC


A) √ - -25 B)  √ - 25-5 C) 12 D) 1

Stosunek boków prostokąta jest równy 1:2. Przekątna prostokąta tworzy z dłuższym bokiem prostokąta kąt α , taki, że
A)  √- cosα = -5- 5 B)  √ - cos α = --3 3 C)  √- co sα = 255- D)  √- co sα = 233-

Ukryj Podobne zadania

Stosunek boków prostokąta jest równy 2:3. Przekątna prostokąta tworzy z dłuższym bokiem prostokąta kąt α , taki, że
A)  √ -- sin α = 5-13- 13 B)  √ -- sin α = --13 13 C)  √ -- sin α = 2-1133 D)  √-- sinα = 31133-

Stosunek boków prostokąta jest równy 1:2. Przekątna prostokąta tworzy z dłuższym bokiem prostokąta kąt α , taki, że
A)  √- sin α = -5- 5 B)  √- sin α = -3- 3 C)  √ - sin α = 2-55 D)  √- sin α = 233-

Stosunek boków prostokąta jest równy 1:3. Przekątna prostokąta tworzy z dłuższym bokiem prostokąta kąt α , taki, że
A) cosα = 32 B) co sα = 12 C)  √10- co sα = 10 D)  3√-10- co sα = 10

Stosunek boków prostokąta jest równy 2:3. Przekątna prostokąta tworzy z dłuższym bokiem prostokąta kąt α , taki, że
A)  √-- co sα = 3-13- 13 B)  √-- cosα = 2-13- 13 C)  √-- co sα = -1133- D)  √ -- co sα = 51133-

Strona 59 z 62
spinner