Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria

Wyszukiwanie zadań

Trójkąt T jest podobny do trójkąta T 1 w skali  1 k = 6 , a trójkąt T2 jest podobny do trójkąta T w skali k = 3 . Pole trójkąta T2 jest równe 24. Trójkąt T 1 ma pole równe
A) 12 B) 48 C) 72 D) 96

Ukryj Podobne zadania

Trójkąt T jest podobny do trójkąta T 1 w skali  1 k = 3 , a trójkąt T2 jest podobny do trójkąta T w skali k = 6 . Pole trójkąta T2 jest równe 32. Trójkąt T 1 ma pole równe
A) 128 B) 8 C) 16 D) 24

Kąt wpisany w okrąg o promieniu 6, który jest oparty na łuku długości 3π ma miarę
A) 30∘ B) 4 5∘ C) 60∘ D) 90∘

Ukryj Podobne zadania

Kąt wpisany w okrąg o promieniu 5, który jest oparty na łuku długości 2π ma miarę
A) 108 ∘ B) 72∘ C) 36 ∘ D) 18∘

Kąt wpisany w okrąg o promieniu 12, który jest oparty na łuku długości 8π ma miarę
A) 30∘ B) 4 5∘ C) 60∘ D) 120∘

Kąt wpisany w okrąg o średnicy 8, który jest oparty na łuku długości 5π ma miarę
A) 225 ∘ B) 56,25∘ C) 16 0∘ D) 11 2,5∘

Liczba przekątnych jest równa liczbie boków w
A) prostokącie B) pięciokącie C) sześciokącie D) siedmiokącie

Ukryj Podobne zadania

Liczba przekątnych jest o 3 większa niż liczba boków w
A) prostokącie B) pięciokącie C) sześciokącie D) siedmiokącie

Liczba przekątnych jest dwa razy większa niż liczba boków w
A) prostokącie B) pięciokącie C) sześciokącie D) siedmiokącie

Dany jest trójkąt prostokątny ABC o kącie prostym przy wierzchołku C . Jeśli |AC | = 12 ,|AB | = 1 5 , to tangens najmniejszego kąta w tym trójkącie jest równy
A) 5 3 B) 3 5 C) 3 4 D) 4 3

Ukryj Podobne zadania

Jedna z przyprostokątnych trójkąta prostokątnego ma długość 15 cm, a przeciwprostokątna 17 cm. Tangens najmniejszego kąta w tym trójkącie jest równy:
A) -2 15 B) 8- 17 C) 15 17 D) -8 15

Dany jest trójkąt prostokątny ABC o kącie prostym przy wierzchołku C . Jeśli |AC | = 12 ,|AB | = 1 3 , to tangens najmniejszego kąta w tym trójkącie jest równy
A) -5 12 B) 12- 5 C) -5 13 D) 13 5

Dany jest trójkąt prostokątny ABC o kącie prostym przy wierzchołku C . Jeśli |AC | = 16 ,|AB | = 2 0 , to tangens najmniejszego kąta w tym trójkącie jest równy
A) 3 5 B) 5 3 C) 4 3 D) 3 4

W trójkącie prostokątnym długość przeciwprostokątnej wynosi 8 i jednej z przyprostokątnych 6. Tangens mniejszego kąta ostrego tego trójkąta jest równy
A) 3 4 B)  √- 3-7- 7 C) √- -7- 3 D) 4 3

Promień podstawy walca zwiększamy trzy razy, a jego wysokość zmniejszamy trzy razy. Wówczas objętość walca
A) zwiększy się trzy razy B) zmniejszy się trzy razy
C) zwiększy się o trzy D) nie zmieni się

Ukryj Podobne zadania

Promień podstawy walca zwiększamy cztery razy, a jego wysokość zmniejszamy cztery razy. Wówczas objętość walca
A) nie zmieni się B) zwiększy się o cztery
C) zmniejszy się cztery razy D) zwiększy się cztery razy

Promień podstawy walca zmniejszamy trzy razy, a jego wysokość zwiększamy trzy razy. Wówczas objętość walca
A) zwiększy się trzy razy B) zmniejszy się trzy razy
C) zwiększy się o trzy D) nie zmieni się

Przekątne podzieliły równoległobok na cztery trójkąty o polach P1,P2,P3,P 4 .


PIC


Który z podanych warunków może nie być spełniony?
A) P1 + P3 = P2 + P4 B) P22= P1 ⋅ P3 C) P + P = P ⋅P 1 3 2 4 D) 2P 4 = P1 + P2

Prostą równoległą do prostej  3 1 y = 6x + 6 jest prosta:
A) y = − 2x+ 3 B) y = − 12x − 4 C) y = 1 x− 12 2 D) y = 1x − 3 6

Ukryj Podobne zadania

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y ) , dana jest prosta k o równaniu y = 3x − 1 . Jedną z prostych równoległych do prostej k jest prosta o równaniu
A) y = 3x + 2 B) y = − 3x + 2 C)  1 y = 3x+ 1 D)  1 y = − 3x + 1

Prostą równoległą do prostej k : 3x − 2y = 0 opisuje równanie
A) 2x − 3y = 0 B) y = 1,5x + 5 C) y = − 23x + 2 D) y = 3x+ 5

Dana jest prosta k o równaniu k : 2x − y + 1 = 0 . Spośród podanych prostych wybierz prostą równoległą do k .
A) 2x + y + 1 = 0 B) y = − 12x + 1 C) y − 2x − 3 = 0 D) x − 2y + 1 = 0

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y ) , dana jest prosta k o równaniu y = − 3x+ 1 . Jedną z prostych równoległych do prostej k jest prosta o równaniu
A) y = 3x + 2 B) y = − 3x + 2 C)  1 y = 3x+ 1 D)  1 y = − 3x + 1

Prostą równoległą do prostej o równaniu  4 2 y = − 3 x− 3 jest prosta opisana równaniem
A) y = − 43x+ 23 B) y = 43x + 23 C) y = 3x− 2 4 3 D) y = − 3x − 2 4 3

Wskaż równanie prostej równoległej do prostej o równaniu 3x + 6y+ 1 = 0 .
A) y = 12x B) y = − 12x C) y = 2x D) y = − 2x

Prosta k równoległa do prostej l o równaniu 8x + 2y − 7 = 0 może mieć wzór
A) y = − 6x + 8 B) y = 8x − 6 C) y = 2x D) y = − 4x− 6

Prosta równoległa do prostej − 3x+ 2y + 5 = 0 ma równanie:
A) y = 2x − 1 B) y = − 3x + 3 C) y = 23x− 8 D) y = 32x + 2

Wskaż równanie prostej równoległej do prostej o równaniu y = 2x − 7 .
A) y = − 2x+ 7 B) y = − 12x + 5 C) y = 1 x+ 2 2 D) y = 2x − 1

Prosta o równaniu 2x + y− 4 = 0 jest równoległa do prostej:
A) − 2x + y = 0 B) 2x − y − 3 = 0 C) 4x + 2y + 3 = 0 D) y = 2x

Prosta l ma równanie y = 2x − 11 . Wskaż równanie prostej równoległej do l .
A) y = 2x B) y = − 2x C) y = − 1 x 2 D) y = 1x 2

Jeden z kątów ostrych trójkąta prostokątnego ma miarę  ∘ 30 . Dłuższa przyprostokątna tego trójkąta ma długość 6 cm. Promień okręgu opisanego na tym trójkącie ma długość
A)  √ -- 2 3 B) 6 C) 3√3- 2 D)  √ -- 4 3

W trójkącie ABC poprowadzono odcinek DE równoległy do boku AB w ten sposób, że |BE | : |EC | = 5 .


PIC


Jeżeli |AB | = 30 to długość odcinka DE jest równa
A) 152 B) 6 C) 5 D) 30 7

Ukryj Podobne zadania

W trójkącie ABC poprowadzono odcinek DE równoległy do boku AB w ten sposób, że |BE | : |EC | = 4 .


PIC


Jeżeli |AB | = 20 to długość odcinka DE jest równa
A) 103 B) 4 C) 5 D) 20 3

Pole prostokąta ABCD jest równe 90. Na bokach AB i CD wybrano – odpowiednio – punkty P i R , takie, że |AP-|= |CR-|= 3 |PB| |RD | 2 (zobacz rysunek)


PIC


Pole czworokąta AP CR jest równe
A) 36 B) 40 C) 54 D) 60

Ukryj Podobne zadania

Pole prostokąta ABCD jest równe 90. Na bokach AB i CD wybrano – odpowiednio – punkty P i R , takie, że |AP-|= |CR-|= 2 |PB| |RD | 3 (zobacz rysunek)


PIC


Pole czworokąta AP CR jest równe
A) 36 B) 40 C) 54 D) 60

Z punktu A poprowadzono dwie styczne do okręgu, przecinające się pod kątem 70∘ . Proste te są styczne do okręgu odpowiednio w punktach B i C . Punkt O jest środkiem okręgu. Miara kąta środkowego BOC , który jest zarazem kątem czworokąta ABOC , jest równa
A)  ∘ 105 B)  ∘ 70 C)  ∘ 14 0 D)  ∘ 11 0

Ukryj Podobne zadania

Z punktu A poprowadzono dwie styczne do okręgu, przecinające się pod kątem 80∘ . Proste te są styczne do okręgu odpowiednio w punktach B i C . Punkt O jest środkiem okręgu. Miara kąta środkowego BOC , który jest zarazem kątem czworokąta ABOC , jest równa
A)  ∘ 100 B)  ∘ 70 C)  ∘ 14 0 D)  ∘ 11 0

Z punktu A poprowadzono dwie styczne do okręgu, przecinające się pod kątem 60∘ . Proste te są styczne do okręgu odpowiednio w punktach B i C . Punkt O jest środkiem okręgu. Miara kąta środkowego BOC , który jest zarazem kątem czworokąta ABOC , jest równa
A)  ∘ 90 B)  ∘ 70 C)  ∘ 12 0 D)  ∘ 11 0

Końcami odcinka P R są punkty P = (4,7) i R = (−2 ,−3 ) . Odległość punktu T = (3,− 1) od środka odcinka P R jest równa
A) √ -- 3 B) √ --- 1 3 C) √ 17- D) 6√ 2-

Ukryj Podobne zadania

Końcami odcinka P R są punkty P = (−2 ,9) i R = (4 ,−1 ) . Odległość punktu T = (− 1,1) od środka odcinka P R jest równa
A) √ -- 3 B) √ --- 1 7 C) √ 13- D) 6√ 2-

Wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego ma długość 6 i dzieli przeciwprostokątną na dwa odcinki, z których jeden ma długość 2. Przeciwprostokątna tego trójkąta ma długość
A) 24 B) 20 C) 14 D) 18

Ukryj Podobne zadania

Wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego ma długość 4. Wysokość ta dzieli przeciwprostokątną na dwa odcinki, z których jeden ma długość 2. Przeciwprostokątna jest równa
A) 4√ 5- B) 4 √ 3- C) 10 D) 8

Wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego ma długość 8 i dzieli przeciwprostokątną na dwa odcinki, z których jeden ma długość 4. Przeciwprostokątna tego trójkąta ma długość
A) 20 B) 16 C) 8 D) 18

Wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego ma długość 6 i dzieli przeciwprostokątną na dwa odcinki, z których jeden ma długość 12. Przeciwprostokątna tego trójkąta ma długość
A) 15 B) 24 C) 16 D) 3

W trójkącie równoramiennym ABC o podstawie AB dane są: |AB | = 6 oraz |∡BAC | = 15∘ . Pole koła opisanego na tym trójkącie jest równe
A) 144 π B) 12 π C) 48 π D) 36π

W trójkącie równoramiennym o bokach długości:  √ -- 5,5,5 2 kąt przy podstawie ma miarę:
A) 45∘ B) 6 0∘ C) 30∘ D) 90∘

Podstawą ostrosłupa jest kwadrat ABCD o boku długości 1. Wysokością tego ostrosłupa jest krawędź SD , a długość krawędzi SB jest równa 2 (zobacz rysunek).


PIC


Różnica miar kątów SBA i SBD jest równa
A) 15∘ B) 2 0∘ C) 45∘ D) 30∘

Objętość walca wynosi  3 81 π cm . Wysokość walca jest 3 razy większa od promienia podstawy. Zatem pole powierzchni podstawy tego walca jest równe
A) 3π cm 2 B) 6π cm 2 C)  2 9π cm D)  2 12π cm

Objętość sześcianu jest równa 64. Pole powierzchni całkowitej tego sześcianu jest równe
A) 512 B) 384 C) 96 D) 16

Pole koła opisanego na trójkącie równobocznym o wysokości 9 jest równe
A) 36π B) 9π C)  √ -- 18 3π D) 12π

Rysunek przedstawia siatkę ostrosłupa prostego o podstawie będącej prostokątem.


PIC


Objętość tego ostrosłupa jest równa
A) 192 B) 96 C) 576 D) 384

Strona 58 z 62
spinner